(1805-1029)

Egyptian Poultry Science Journal

http://www.epsj.journals.ekb.eg/

ISSN: 1110-5623 (Print) – 2090-0570 (Online)

EVALUATION OF USING PROPIONIC ACID AND LIVE YEAST IN DIETS LOW IN PROTEIN AND ENERGY ON BROILER PERFORMANCE

M.A.M. Mousa

Anim. Prod. Res. Institute, Agric. Res. Center. Ministry of Agric. Dokki, Giza **Corresponding author:** Mohamed Mousa; Email: m_mousa67@yahoo.com

Received: 26/07/2018 Accepted: 14/08/2018

ABSTRACT: The aim of the present study was to determine the effect of dietary supplementation of either propionic acid (PA), live yeast (Saccharomyces cerevisae) (Sc) or their combination on the performance, carcass characteristics, some blood traits and economical efficiency (EEf) of broiler chicks. Two hundred and fourty unsexed day-old Cobb commercial broiler chicks were distributed randomly into eight treatments, each having three replicates of 10 chicks each. Eight dietary treatments were conducted including, (T1) control group which were fed the basal diet, (T2) control +0.2% (PA), (T3) control +0.2% (Sc), (T4) control + (0.2% PA + 0.2% Sc), (T5) Control - low by 1.5% protein and 200 Kcal ME /Kg (LPLE), (T6) LPLE + 0.2% (PA), (T7) LPLE + 0.2% (Sc) and (T8) LPLE + (0.2% PA + 0.2% Sc). Results showed that birds fed diets with all additions achieved higher body weight gain BWG compared to control or LPLE. Results of feed intake (FI) showed significantly ($P \le 0.01$) higher values in group T4 compared to all treatments. While, the lowest feed intake (P≤0.01) values were in groups T5, T6 and T7 compared to control. Feed conversion ratio (FCR) improved in all supplemented diets compared to those without supplementation. No significant effect was observed in the average values of giblets (liver, heart, gizzard), and abdominal fat, while all additions significantly ($P \le 0.01$) increased the dressing percentage and total edible parts compared to control or LPLE. Dietary supplements of either PA, Sc or (PA + Sc) increased RBCs, Hb, PCV, WBCs, as compared to control group, but LPLE with different supplements insignificantly affect all hematological parameters as compared to LPLE. Total protein and globulin were significantly (P≤0.01) increased by using all supplements compared to control or LPLE. Total cholesterol and total lipids significantly (P≤0.01) reduced of the chicks fed supplements compared to control or LPLE. Addition of PA, SC and combination of them had significantly (P≤0.01) higher ND titers than control or LPLE. Addition PA, Sc and combination of them to LPLE recorded the best values of (EEf) and (REEf) compared to the other groups. In conclusion, the addition of PA or Sc either alone or in combination to LPLE broiler diet, could improve the performance, carcass characteristics and some blood traits and enhanced the immunity and proved to be a good substitute to antibiotic growth promoters in improving the performance of broiler chicken.

Keywords: Propionic acid - live yeast (Saccharomyces cerevisae) - Broilers - Performance.

INTRODUCTION

The use of antibiotic growth promoters (AGPs) in poultry feed was banned in 2006, although their beneficial roles in growth performance and disease poultry, due to the prevention in development of resistance in bacteria and presence of drug residues in meat Hashemi (2010). Efforts have been focused on the use of alternatives to AGPs such as organic acids and phytobiotics (Elagib et al., 2013). Organic acids and their blends (acetic acid, formic acid, lactic acid, propionic acid and isobutyric acid) can be used to poultry production enhance and performance through improvement of nutrient digestion and absorption by reducing enteric pathogenic microbial loads and intestinal pH in birds. Organic acids and their salts are generally considered as safe and have been affirmed to be used as natural feed additives in animal production. (Kamal and Ragaa, 2014). As alternatives to antibiotic growth promoters, organic acids (OA) have demonstrated positive results in poultry production, due to their potential to lower the intestinal pH and enhance the bacterial development against pH changes (Pirgozliev et al., 2008; Ao et al., 2009), thus providing better intestinal health for the bird to maximize its nutrient absorption. Additionally, using organic acids were reported to have several beneficial effects on feed conversion ratio, performance and growth enhancing mineral absorption (Král et al., 2011; Gálik and Rolinec, 2011 and Petruška et al.. 2012). Yeast culture products containing Saccharomyces cerevisae, which are rich in enzymes, vitamins, and other nutrients, have many beneficial effects on animals such as growth rate, feed efficiency, egg production, and

reproduction Dawson (1993). Lutful-Kabir (2009) noted that the mode of action of dry yeast in poultry includes: maintaining normal intestinal micro- flora by competitive exclusion and antagonism; metabolism by increasing altering digestive enzyme activity and decreasing bacterial enzyme activity and ammonia production; improving digestion and stimulating the immune system. Baurhoo et al. (2009) found that live yeast increased numbers of goblet cells in all sections of small intestine in broilers. The main function of goblet cells is the production of mucus, which was found to assist with transportation between lumen epithelial cells and and form an environment in which certain digestive process could occur (Smirnov et al., 2004). The mucus also protects the intestinal lining from damages (Smirnov et al., 2006). Eltazi et al. (2014) reported that using live yeast (Saccharomyces cerevisae) at levels of 0.1, 0.2 and 0.3% showed significantly (P<0.05) higher body weight gain and better feed conversion ratio than the control group. The aim of this study was to evaluate the effect of propionic acid (PA), live yeast (Saccharomyces cerevisae) (Sc) and their combination (PA + Sc) in diets low in protein and energy content on broiler performance, carcass characteristics, some blood traits and economical efficiency (EEf) of broiler chicken.

MATERIALS AND METHODS

Experimental birds and design: Two hundred and fourty unsexed day-old Cobb commercial broiler chicks were used in this experiment. Chicks were individually wing-banded, having nearly equaled live weights $(43\pm0.27g)$ and randomly distributed into eight groups, each group contain 3 replicates of 10

Propionic acid - live yeast (Saccharomyces cerevisae) - Broilers - Performance.

birds each. Chicks were reared in floor pens as chicks of each replicate were housed in a pen (1square meter), and were allocated to the following dietary treatments:

1- Control

2- Control +0.2% propionic acid (PA).

3- Control + 0.2% live yeast (Saccharomyces cerevisae) (Sc).

4- Control + 0.2% (PA) + 0.2% (Sc).

5- Control – low 1.5% protein and 200 Kcal ME /Kg energy (LPLE).

6- LPLE + 0.2% (PA).

7-LPLE + 0.2% (Sc).

8- LPLE + 0.2% (PA) + 0.2% (Sc).All diets were used in mash form and formulated to meet the nutrient requirements of the Cobb commercial broiler according to NRC (1994). The composition and calculated analysis of diets are shown in Table (1). Propionic acid (PA) obtained from Al-Gomhoria Company for chemicals. Live yeast (Saccharomyces cerevisae 1×10^{11} cfu/gm) (Sc) obtained from general Pharma Company; Egypt. Chicks in all treatments were reared under similar hygienic and managerial conditions. All birds received feed and water ad libitum. Thebirds were vaccinated against Newcastle disease and infectious bronchitis on day 7 of age and against Gumboro on days 14 and 24 of age. Body weight (BW), feed intake (FI) and mortality rate (MR) were recorded biweekly and average body weight gains (BWG); feed conversion ratio (FCR) were calculated. Economical efficiency (EEf) was estimated during all period of experiment. EEf was calculated (net revenue divided by total feed costs). While net revenue was calculated as total revenue minus total feed costs. At the end of the experiment (42 day), three birds from each treatment were slaughtered to obtain the carcass and giblets (gizzard,

liver and heart). Dressing percentage was then calculated relatively to live body weight by using the following equation: Dressing % = Carcass weight + Giblets weight/ Pre-slaughter weight*100

Two blood samples were taken from the brachial vein (one into heparinized tube to separate plasma and the other one into unheparinized tube to separate serum) of 3 birds/treatment. Fresh blood samples used for determination were of hemoglobin concentration (Hb), packed cell volume % (PCV), total erythrocytes count (RBCs), and total leucocytes count Mean Corpuscular Volume (WBCs). (MCV) was calculated = PCV \times 10/ RBC's, Mean Corpuscular Hemoglobin (MCH) was calculated = Hb \times 10/ RBC's Mean Corpuscular Hemoglobin and Concentration (MCHC) = HbX100/PCV. All measurements conducted according to Clark et al. (2009). While, the second blood tube was centrifuged at 3000 rpm for 20 minutes. The separated plasma was stored at -20°C until assayed for blood traits included determine of ND virus antibody (Newcastle disease titers), total lipids (mg/dl), total protein (g/dl), albumin (g/dl), globulin (g/dl), total cholesterol (mg/dl), and liver enzymatic activity, being aspartate aminotransferase (AST) (mg/dl)and alanine aminotransferase (ALT) (mg/dl) using commercial kits.

Statistical Analysis:

Obtained data were statistically analyzed using linear models procedure described in SAS users guide (SAS, 2004). Differences among treatment means were tested using Duncan's multiple range test (Duncan's, 1955). One – way analysis model was applied for data obtained from the experiment:

 $Y_{ij} = \mu + T_i + E_{ij}$

Where: Y ij =Observations

μ =The overall mean								
Ti =Effect of i th treatments	Eij							
=Experimental error								
RESULTS AND DISCUSSION								
Productive performance:								
Live body weight, body weight gain,								

feed intake, feed conversion ratio, and mortality rate:

Results in Table (2) shows the effect of the addition of propionic acid (PA) or live yeast (Saccharomyces cerevisae) (Sc) or their combination (PA + Sc) to basal control, or lower in protein and energy content (LPLE) diets on the productive performance of broiler chicks. The results indicated that BW at 2, 4 and 6 weeks of age was significantly (P≤0.01) higher in chickens received basal diet with PA, Sc or (PA+SC) as compared to either control (T1) or LPLE (T5). The highest increase was in T4 followed by T3 and T2. While, adding the (PA + Sc) to LPLE showed no significant effect compared to control. The same trend was observed for the average values of body weight gain (BWG) of experimental groups at the all periods of experiment. The results of the present study are in line with those obtained by Sheikh et al. (2011), Ghazalah et al. (2011), Hassan et al. (2016) and Hossain and Nargis (2016) who indicated that dietary supplementation of organic acids improved performance of broiler chickens as compared to the un-supplemented group. Results of averages FI values showed no significant differences between all groups at 14 day of age, except T5 and T7 which recorded the lowest values. At the interval of 15-28d, T 3 a n d T 4 achieved the highest increase in FI and T 5 achieved the lowest FI. however, there were no significant differences

the other among treatments. At the interval of 29-42d and 1-42d of age, feed intake of birds received basal diet with PA, Sc or (PA+ Sc) were not significantly affected as compared to control. While, birds fed LPLE basal diet with PA (T6) or Sc (T7) recorded lower FI ,but those having (PA + Sc) (T8) did not significantly differ as compared to the control. Results indicated that FCR values were improved with all tested supplements. The best significant feed conversion ratio (FCR) was obtained by using PA, Sc and (PA + Sc) in all periods studied except for the period of 1-42 d as T4 achieved better FCR compared with all groups, while adding supplements to LPLE diet showed not significant effect compared to control. This result agrees with Abo El-Maaty (2017) who reported that the added organic acids (formic at levels 0.5, 1.0% and citric acid at levels 2, 3%) in duck diets had significantly lower FI and better FCR than other groups. Adil et al. (2010, 2011) found that chicks fed the diet supplemented with organic acids showed a significant ($P \le .05$) improvement in the FCR as compared to the control. The improvement in the FCR could be possibly due to better utilization of nutrients resulting in increased body weight gain in the birds fed organic acids in the diet. The improvement in FCR in this study could be possibly due to lower amount of feed intake as a result of better utilization of nutrients in the birds fed organic acid or live yeast in the diet. These results agreed with those obtained by Al-Kassi and Mohssen (2009) who reported that adding 2 g of propionic acid /kg broiler diets resulted in significant improvements in body weight gain, feed efficiency. intake, and feed This improvement may be due to that

Propionic acid - live yeast (Saccharomyces cerevisae) - Broilers - Performance.

supplementation of organic acids in the diet for broiler could protect the chicks by competitive exclusion of food borne disease (La-Reguibe and Woodward, enhanced nutrient utilization, 2003), growth and feed efficiency (Denil et al., 2003) and reduction of viable bacterial cells (Skivanova and Marounek, 2007). It is well known that organic acids have specific antibacterial effect at low pH that may help to reduce overall bacterial numbers or modify distribution of bacterial species in the gut and increase nutritive value of the diet. With regard to the addition of live yeast (Sc), the results obtained herein are in harmony with the findings of Santin et al. (2001), Zhang et al. (2005), Gao and Qi (2008), Paryad and Mahmoudi (2008) who found that the addition of dietary (Sc) improved the body weight gain and feed conversion ratio of the broiler chicks. This improvement in body weight gain and feed conversion ratio may be attributed to culture yeast (Sc) content of yeast cells as well as metabolites such as peptides, organic acid. oligosaccharides, amino acids, flavour and aroma substances, and possibly unidentified growth some factors. which have been propose to beneficial performance responses in animal production (Gao and Oi 2008). Moreover, supplemented yeast increased digestion and absorption of nutrients (Abaza et al., 2008; Gao and Oi and improved the intestinal 2008), lumen health (Springet al., 2000; Paryad and Mohamoudi, 2008), which resulted in better performance. The improvement of nutrient utilization resulted from the addition of (Sc) may be due to Mannan Oligo saccharides (MOS) found in the yeast cell wall, which have been shown to improve nutrient utilization through

stimulation specific microbial of populations in the gastro-intestinal tract (Kocher et al., 2004), and increased surface area resulting from longer villi (Santin et al., 2001; Zhang et al., 2005). Also, greater villus height increases the activities of enzymes secreted from the lips of the villi resulting in improving digestibility of nutrients (Hampson, 1986). Baurhoo et al. (2009) found that MOS also increased numbers of goblet cells in all sections of small intestine in broilers. The main function of goblet cells is the production of mucus, which was found to assist with transportation between lumen and epithelial cells and form an environment in which certain digestive process could occur (Smirnov et al., 2004). The mucus also protects the intestinal lining from damages (Smirnov et al., 2006). Also, these findings agree with Hadj Ayed et al. (2010) who found an increase in the relative body weights of chicks receiving a diet supplemented with yeast probiotic. Ayed et al. (2004) found an Haj improvement in broilers growth performances when feed the supplemented with a Saccharomyces cerevisae. These improvement may be due to that yeast (Sc) constitutes a considerable source in nutrients especially the B complex vitamins, amino acids and enzymes which serve to improve chickens health, according to Zhang et al. (2005); and Flickinger and Fahey (2002) ; improve intestinal microbial balance (Fuller, 1989) produce the digestive enzyme (Saarela et al., 2000). Mortality rate, except for the control (T1) 3.33±0.70, LPLE (T5) and LPLE + 2.22 ± 0.57 PA (T6) 1.11 ± 0.57 , there are no death cases in all treatments. The absence of death cases among the broilers might be due to anti-

microbial in PA and Sc for stimulating the immune system (Toms and Powrie, 2001), reducing intestinal pН and release of bacteriocins (Rolfe, 2000), besides the good house management during the experiment. This result agrees with Eltazi et al. (2014) who reported that the broiler chicks which supplemented with dietary yeast (Sc) had significantly (P<0.05) lower mortality rate as compared to control group. The low mortality among the chick groups that fed on dietary (Sc) may be due to the ability of (Sc) to reduce disease infection (Line 1997), through increasing et al., concentration of commensally microbes or suppressing pathogenic bacteria in intestinal tract (Stanley et al., 2004).

Carcass characteristics:

The effect of dietary treatments on carcass, dressing, abdominal fat, liver, heart, gizzard, giblets and total edible parts in different groups are illustrated in Table (3). Dietary supplementation of either PA, Sc or (PA + Sc) had significantly higher percentages of dressing and total edible parts compared to control or LPLE. While, the dietary supplements did not significantly affect the relative abdominal fat, liver, heart and giblets. These results agree with those obtained by Denil et al. (2003) who reported that organic acids (mixture of propionic and formic acid) had no effect on the abdominal fat pad, abdominal fat percentage and liver weight compared to The results of carcass control. characteristics agree with Talebi et al. (2010) who reported that the added organic acids improved the relative weights of carcass, total edible parts and dressing of birds fed citric acid compared to the control group. Results are in harmony with Ghazalah et al. (2011) who reported that added dietary organic acid improved the relative weights of carcass, total edible parts and dressing of birds fed citric acid at 2 g/kg as compared to the control group. Also, agree with Abo El-Maaty (2017) who reported that the added organic acids (formic at levels 0.5, 1.0% and citric acid at levels 2, 3% in ducks diets) improved the total edible parts and dressing of birds compared to the control group.

Blood measurements

Hematological parameters

Results of hematological parameters are shown in Table (4). Results revealed that dietary supplementation of PA, Sc or (PA + Sc) increased RBCs, Hb, PCV, WBCs, as compared to control group. But, LPLE with different supplements had insignificant effect concerning all the hematological parameters as compared to LPLE. Moreover, birds fed the basal diet supplemented with (PA + Sc) had significantly higher RBCs, Hb, and PCV than other groups. This result agree with Zareshahneh et al. (2007; Nasiroleslami Torki (2010) who found that and supplementation of organic acids at 21 and 42 days of age significantly increased, PCV, RBC and WBC compared to control, these increases may be due to their antimicrobial interactions and stimulation of immune system resulting in enhanced immunity. Also, results agree with Abo El - Maaty (2017) who reported that the added organic acids (formic at levels 0.5, 1.0% and citric acid at levels 2, 3% in duck diets) increased RBCs, hemoglobin, PCV, WBCs as compared to control group. The value of mean corpuscular volume (MCV) was significantly (P≤0.01) reduced by PA, Sc or (PA + Sc) compared to control. This result agrees with Ndelekwute et al. (2016) who reported that when acetic acid, citric acid, butyric acid and formic

Propionic acid - live yeast (Saccharomyces cerevisae) – Broilers - Performance.

acid each at 0.25% level were added, the of red blood cells number was significantly higher in organic acid groups compared to control. But, showed that there were no significant differences (P>0.05) in the number of white blood cells, haemoglobin, mean corpuscular haemoglobin concentration and mean corpuscular volume. However, the results disagree with those of Banerjee (2007) showed that hematological who parameters (RBCs, hemoglobin, PCV, WBCs) were not significantly (P>0.05) affected as compared to control group.

Blood biochemical

The results of the estimated blood biochemical parameters as affected by dietary PA, Sc and PA + Sc are presented in Table (5). Total protein and globulin were significantly ($P \le 0.01$) increased by using all supplements compared to control or LPLE. But combination of PA +Sc achieved higher values compared to other groups . This result agrees with Ghazalah et al. (2011) who reported that dietary organic acids exhibited relatively higher concentration of total protein and globulin as compared to the control birds, indicating that the immune response improved by addition of organic acids which might indicate that broiler chicks fed acidifiers-supplemented diets had better immune response and disease resistance. These results indicated that supplemental organic acid may improve the immune response, as globulin level has been used as an indicator of immune responses and source of antibody (Kamal and Ragaa ,2014). Results showed that either organic acid or live yeast inclusion to broiler feeds significantly reduced the total cholesterol and total lipids of the chicks fed supplements compared to control or LPLE. While PA +Sc achieved lower value compared to other groups.

This reduction may be due to decreases in gut pH. Reduction in gut pH may interfere with the activities of microbial enzymes in the gut, thereby stimulating the bacterial cells to expend energy to expel the protons, leading to an intracellular accumulation (Young and Foegeding ,1993). Albumin and A/G ratio were significantly decreased in birds fed supplemented diets compared to the control group. Birds fed supplements had significantly, lower serum AST and ALT than control or LPLE groups. Furthermore, PA +Sc achieved lower value compared to other groups. This result is in harmony with those of Abo El Maaty (2017) who found lower percentage of serum AST and ALT in ducks given organic acids than the control.

Newcastle disease (ND) titers antibody

Results in Table (6) showed that addition of organic acid (propionic acid), live yeast (Saccharomyces cerevisae) and combination of them in fed groups had significantly (P≤0.01) higher ND titers than control or LPLE group. While, the supplementing PA +Sc achieved higher ND titers than other groups. This result is in harmony with those of Shashidhara and Devegowda (2003) who suggested that, live yeast may be influencing systemic immunity. This effect on antibody titers might have been due to influence of the live yeast on immune system; improved intestinal absorption of some nutrients, such as Zn, Cu, and Se.

Economical Efficiency (EE)

Economical evaluation parameters of the experimental treatments in broiler diets in terms of feeding cost, net revenue, economical efficiency (EEf) and relative economical efficiency (REEf) of meat production are listed in Table (7). Results showed that adding PA, Sc or

combination of them to LPLE recorded the best economical efficiency (EEf) and relative economical efficiency (REEf) values compared to the other groups. This result agreed with those obtained by Abaza et al. (2008) who reported that, addition of (Sc) at level 0.3% to broiler diet gave the better relative economic efficiency compared to the control diet. Also, results agree with Abo El - Maaty (2017) who reported that the added organic acids (formic at levels 0.5, 1.0% and citric acid at levels 2, 3% in ducks) had significantly better values of economical efficiency compared to the control group.

CONCLUSION

From the findings of current study, it could be concluded that addition of propionic acid (PA), live veast (Saccharomyces cerevisae) (Sc) and their combination each at 0.2% level in broiler diets with low protein and energy could the performance. improve carcass characteristics. some blood traits. enhanced the immunity and achieved the best economical efficiency (EEf) and relative economical efficiency (REEf) at 42 days of age.

Ingredients	Contro	1	Low protein energy (LPLE	
	Starter-Grower (1-28 day)	Finisher (29-42 day)	Starter-Grower (1-28 day)	Finisher (29-42 day)
Yellow corn	54.49	62.3	57.49	66.1
Soybean meal (44%)	34	25.3	28	24
Corn gluten (60%)	4	5	4	2
Wheat bran			6	3.4
Soy oil	3	2.9		
Dicalcium Phosphate	1.7	1.7	1.7	1.7
Limestone	1.5	1.5	1.5	1.5
NaCl	0.3	0.3	0.3	0.3
Sodium Bicarbonate	0.37	0.36	0.37	0.36
Premix (V&M.) *	0.3	0.3	0.3	0.3
DL.Methionine	0.17	0.17	0.17	0.17
L-Lysine HCl	0.17	0.17	0.17	0.17
Total	100	100	100	100
Calculated analysis**				
CP%	22	19	20.5	17.5
ME(Kcal/Kg)	3000	3100	2800	2900
Crude fiber %	3.76	3.38	4.05	3.68
Crude fat %	5.68	5.75	2.95	3.05
Calcium %	1.07	1.05	1.07	1.05
Avail. Phosphorus %	0.46	0.45	0.46	0.45
Lysine%	1.20	1.07	1.20	1.04
Methionine %	0.56	0.54	0.56	0.50
Sodium %	0.23	0.23	0.23	0.23
Price / Ton (LE)	6930	6150	6660	5840

Propionic acid - live yeast (Saccharomyces cerevisae) – Broilers - Performance. Table (1): Composition and calculated analysis of the experimental diets.

*Premix contain per 3 kg Vit. A 12000 000 IU, Vit. D3 4000 000 IU, Vit. E 40 000 mg, Vit. K3 4000 mg, Vit B1 3000 mg, Vit. B2 7700 mg, Vit. B6 6600 mg, Vit. B12 30 mg, Pantothenic acid 1800 mg, Niacin 4500 mg, Biotin 250 mg, Folic acid 1800 mg, Choline 600 mg, Selenium 150 mg, Copper 15000 mg, Iron 30000 mg, Manganese 100000 mg, Zinc 7500 mg, Iodine 1000 mg, Cobalt 150 mg and CaCo3 up to 3000 g.

** Analysis of ingredients calculated according NRC (1994).

Table (2): Effect of dietary supplementation on growth performance and mortality rate.

Treatment	T1	T2	T3	T4	T5	T6	T7	T8	SEM		
IBW(g)	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	±0.27		
Live body w	Live body weight(g)										
14 day	369 ^b	402 ^a	413 ^a	422 ^a	303 ^d	334 ^c	337 ^c	351 ^{bc}	±4.63		
28 day	953 ^d	1038 ^c	1077 ^b	1139 ^a	756 ^e	930 ^d	929 ^d	942 ^d	± 7.40		
42 day	1806 ^c	1955 ^b	1972 ^b	2092 ^a	1488 ^f	1723 ^e	1753 ^{de}	1783 ^{cd}	± 8.29		
Live body w	veight ga	in(g)									
1-14 day 15-28 day 29-42 day 1-42 day Feed intake 1-14 day 15-28 day 29-42 day	38 ^{abc} 80 ^b 112 ^{ab}	359^{a} 636^{bc} 917^{ab} 912^{b} 39^{ab} 79^{b} 113^{a} 77^{ab}	369 ^a 664 ^b 895 ^{bc} 1929 ^b 38 ^{abc} 81 ^a 112 ^{ab} 77 ^{ab}	379^{a} 717^{a} 954^{a} 2049^{a} 39^{ab} 82^{a} 112^{ab} 70^{a}	260 ^d 452 ^e 733 ^f 1445 ^f 36 ^c 77 ^c 110 ^{bc} 75 ^{de}	291 ^c 596 ^{cd} 793 ^e 1681 ^e 37 ^{abc} 79 ^b 106 ^e 79 ^f	294 ^c 591 ^d 825 ^{de} 1710 ^{de} 36 ^c 80 ^b 109 ^{cd}	309^{bc} 590^{d} 842^{d} 1741^{cd} 37^{bc} 80^{b} 108^{d} $7cc^{cd}$	± 4.62 ± 8.52 ± 9.78 ± 8.34 ± 0.41 ± 0.35 ± 0.38		
1-42 day	76 ^{bc}	77 ^{ab}	77 ^{ab}	78 ^a	75 ^{de}	73 ^f	74 ^{ef}	76 ^{cd}	±0.28		
Feed conver			1 4 4 6	1 420	1.068	1.00h	1 72bc	1 cchcd	10.02		
1-14 day	1.62^{cd}	1.52 ^{de} 1.74 ^{cd}	1.44 ^e 1.72 ^d	1.43^{e}	1.96 ^a 2.39 ^a	1.80 ^b 1.87 ^{bc}	1.73^{bc}	1.66^{bcd}	± 0.03		
15-28 day	1.91 ^c 1.83 ^{bcd}	1.74^{de} 1.73^{de}		1.61^{d}			1.89 ^b 1.84 ^{bc}	1.89 ^b	± 0.03		
29-42 day			1.76^{cd}	1.65^{e}	2.11^{a}	1.86 ^b		1.80^{bcd}	± 0.02		
1-42 day	1.82 ^b	1.69 ^c	1.68 ^c	1.59 ^d	2.17 ^a	1.82 ^b	1.82 ^b	1.83 ^b	±0.01		
MR%*	3.33	00.00	00.00	00.00	2.22	1.11	00.00	00.00	±0.06		

a, b,.....f means in the same row with different superscripts are significantly different (p \leq 0.01).

T1=control, T2=control+0.2% propionic acid (PA), T3=control+0.2% live yeast(SC), T4=control+0.2% propionic acid (PA)+ 0.2% live yeast(SC), T5=low protein and energy (LPLE), T6= LPLE+0.2% PA, T7= LPLE+0.2% SC, T8=LPLE+0.2% PA+ 0.2% SC, IBW=initial body weight, *MR: Mortality rate.

Parameter	T1	T2	Т3	T4	T5	T6	T7	T8	SEM
(LBW) (g)	1927 ^b	2088 ^{ab}	2040 ^{ab}	2117 ^a	1513 ^e	1753 ^d	1847 ^d	1873 ^{cd}	±38.79
Dressing%	69.52 ^b	71.81 ^a	72.20 ^a	72.25 ^a	65.60^{d}	67.27 ^c	67.47 ^c	68.28 ^c	±0.312
Abdominal Fat%	0.951	0.910	0.948	0.914	0.925	0.940	0.917	0.934	±0.014
Liver%	2.80	2.84	3.04	2.82	2.95	2.88	2.79	2.76	±0.061
Gizzard%	2.36	2.38	2.43	2.41	2.42	2.38	2.34	2.37	±0.031
Heart%	0.761	0.750	0.768	0.740	0.748	0.751	0.754	0.756	±0.014
Giblets%*	5.92 ^{ab}	5.97 ^{ab}	6.24 ^a	5.97 ^{ab}	6.12 ^{ab}	6.01 ^{ab}	5.89 ^b	5.89 ^b	±0.070
Total edible parts**	75.67 ^b	77.67 ^a	78.33 ^a	78.00^{a}	71.67 ^d	73.67 ^c	73.67 ^c	74.33 ^{bc}	±0.312

Table (3): Effect of dietary supplementation on carcass characteristics.

a, b,c, d means in the same row with different superscripts are significantly different ($p \le 0.01$).

T1=control, T2=control+0.2% propionic acid (PA), T3=control+0.2% live yeast(SC), T4=control+0.2% propionic 807

acid (PA)+ 0.2% live yeast(SC), T5=low protein and energy (LPLE), T6= LPLE+0.2%PA, T7= LPLE+0.2%SC,

T8=LPLE+0.2%PA+ 0.2%SC.* Giblets = Liver + Gizzard + Heart, ** Total edible parts = dressing + giblets.

Table (4): Effect of dietary supplementation on hematological parameters.

Parameter	T1	T2	T3	T4	T5	T6	T7	T8	SEM
WBCs $(10^{3}/mm^{3})$	257.93 ^b	267.97 ^a	267.97 ^a	272.67 ^a	249.77 ^c	250.77 ^c	252.50 ^{bc}	253.3 ^{bc}	±1.44
Hb (g/dl)	8.70 ^c	9.30 ^b	9.50 ^{ab}	9.97 ^a	8.13 ^d	8.30 ^{cd}	8.20 ^{cd}	8.43 ^{cd}	±0.12
RBCs $(10^{6}/mm^{3})$	2.08 ^c	2.27 ^b	2.31 ^{ab}	2.39 ^a	2.03 ^c	2.10 ^c	2.06 ^c	2.09 ^c	±0.02
PCV (%)	28.33 ^{cd}	29.10 ^{bc}	29.83 ^{ab}	30.60 ^a	26.20 ^e	26.37 ^e	26.13 ^e	27.03 ^{de}	±0.29
MCV	135.99 ^a	128.43 ^b	128.93 ^{ab}	128.03 ^b	129.27 ^{ab}	125.76 ^b	126.89 ^b	129.36 ^{ab}	±1.53
MCH	41.76	41.04	41.07	41.70	40.13	39.59	39.81	40.35	±0.47
MCHC	30.71 ^b	31.96 ^{ab}	31.84 ^{ab}	32.57 ^a	31.04 ^b	31.48 ^{ab}	31.39 ^{ab}	31.20 ^{ab}	±0.29

a, b, c, d Means in the same row with different superscripts are significantly different ($p \le 0.05$). WBCs= white blood cell count, RBCs=Red blood cell count, MCV= Mean Corpuscular Volume, MCH= Mean Corpuscular Hemoglobin, MCHC= Mean Corpuscular Hemoglobin Concentration, PCV=packed cell volume. T1=control,

T2=control+0.2% propionic acid (PA), T3=control+0.2% live yeast (SC), T4=control+0.2% propionicacid (PA)+ 0.2% live yeast(SC), T5=low protein and energy (LPLE), T6= LPLE+0.2%PA, T7= LPLE+0.2%SC, T8=LPLE+0.2%PA+ 0.2%SC

De see see st see	T 1	TO	ТЭ	Π4	T	Т	T7	то	CEM
Parameter	T1	T2	T3	T4	T5	T6	T7	T8	SEM
Total cholesterol(mg/dl) Total	187.67 ^a	162.33 ^b	162.33 ^b	128.33 ^d	193.00 ^a	160.33 ^b	158.67 ^b	140.00 ^c	±1.38
lipids (mg/dl) Total	533.33 ^a	471.00 ^c	475.00 ^c	423.33 ^e	518.33 ^b	449.33 ^d	444.67 ^d	421.67 ^e	±2.09
protein (g/dl) Albumin	2.66 ^d	3.51 ^b	3.90 ^{ab}	3.97 ^a	2.72 ^{cd}	3.06 ^c	3.04 ^{cd}	3.55 ^b	±0.08
(g/dl) Globulin (g/dl)	1.25 ^{ab}	1.12 ^{cd}	1.08 ^{ed}	1.01 ^e	1.32 ^a	1.24 ^{ab}	1.18 ^{bc}	1.07 ^{de}	±0.02
A/G (g/dl)	1.42 ^{ef}	2.39 ^c	2.82^{ab}	2.97 ^a	1.39 ^f	1.82 ^{de}	1.86 ^d	2.48 ^{bc}	±0.08
ALT (U/L)	0.88 ^a	0.48 ^c	0.38 ^c	0.34 ^c	0.95 ^a	0.68 ^b	0.64 ^b	0.43 ^c	±0.03
AST (U/L)	4.92 ^a	4.59 ^{bc}	4.49 ^c	4.23 ^d	4.94 ^a	4.70 ^b	4.63 ^b	4.32 ^d	±0.01
	70.66 ^a	57.32 ^b	50.29 ^b	29.35 ^c	73.20 ^a	57.82 ^b	51.54 ^b	33.58 ^c	±0.12

Table (5): Effect of dietary supplementation on blood biochemical parameters.

808

a, b, ...f means in the same row with different superscripts are significantly different ($p \le 0.01$). T1=control, T2=control+0.2% propionic acid (PA), T3=control+0.2% live yeast (SC), T4=control+0.2% propionic acid (PA)+ 0.2% live yeast(SC), T5=low protein and energy (LPLE), T6= LPLE+0.2%PA, T7= LPLE+0.2%SC, T8= LPLE+0.2% PA + 0.2% SC

T8=LPLE+0.2%PA+ 0.2%SC

 Table (6): Effect of dietary supplementation on antibodies Newcastle disease (ND) at 42 days of age.

Parameter	T1	T2	Т3	T4	T5	T6	T7	T8	SEM
ND titer									
At 42 days of age	3.87 ^e	4.91 ^c	4.94 ^c	5.42 ^a	3.82^{f}	4.83 ^d	4.85 ^d	5.13 ^b	±0.01

a, b,...f means in the same row with different superscripts are significantly different ($p \le 0.01$).

T1=control, T2=control+0.2% propionic acid (PA), T3=control+0.2% live yeast (SC), T4=control+0.2% propionic

acid (PA)+ 0.2% live yeast(SC), T5=low protein and energy (LPLE), T6= LPLE+0.2%PA, T7= LPLE+0.2%SC,

 $T8{=}LPLE{+}0.2\%\,PA{+}\ 0.2\%\,SC$

Pr
lo
Dio
Ĕ.
C
ac
id
<u> </u>
liv
e
ye
asi
$\overline{\mathbf{G}}$
Sa
S
ha
iro
Ē
Ŋ
es
ŝ
ere
Ľ.
Sa
e)
1
В
6
ile
rs
Propionic acid - live yeast (Saccharomyces cerevisae) – Broilers - Performance.
Pe
ĥ
P,
n
an
Ĩ
•

	Feed intake cost(LE/kg)				Total revenue	Net revenue		
	Variables	(St-gr)	(Fin)	Total	(LE/kg)	(LE/kg)	EEf	REEf
		cost	cost	cost				%
	T1	11.37	10.40	21.77	45.16	23.39	1.07	100
	T2	11.78	10.88	22.66	48.87	26.21	1.16	108
	T3	11.78	10.67	22.45	49.31	26.86	1.20	112
	T4	12.27	10.97	23.24	52.31	29.07	1.25	117
	T5	9.76	9.26	19.02	37.21	18.19	0.96	90
	T6	10.38	8.93	19.31	43.08	23.77	1.23	115
	Τ7	10.18	9.61	19.79	43.83	24.04	1.21	113
2	T8	10.53	9.35	19.88	44.58	24.70	1.24	116

Table (7): Effect of dietary supplementation on economical efficiency (EEf).

T1=control, T2=control+0.2% propionic acid (PA), T3=control+0.2% live yeast (SC), T4=control+0.2% propionic

acid (PA)+ 0.2% live yeast(SC), T5=low protein and energy (LPLE), T6= LPLE+0.2% PA, T7= LPLE+0.2% SC,

T8=LPLE+0.2%PA+0.2%SC.St-gr=starter-grower, fin=finisher, feed price= according to the price different ingredients available in the market (May 2018), sell price= according to the local market price (June 2018). EEf=Economical efficiency= (net revenue per unit/total feed cost). REEf=Relative economical efficiency, assuming that the control diets=100%.

REFERENCES

- Abaza, I.M.; Shehata, M.A.;
 Shoieb, M.S. and Hassan, I.I.
 2008. Evaluation of some natural feed additives in growing chick diet. International Journal of Poultry Science, 7 (9): 872-879.
- Abo El-Maaty, Hayam M. A. 2017.Impact of using organic acids on growth performance,blood biochemical and hematological traits and immune response of ducks(Cairina moschata). Egypt. Poult. Sci., vol (37)(iii): 907-925.
- Adil, S.; Banday, T.; Bhat, G. H.; Salahuddin, M.; RaquIb, M. amd Shanaz, S., 2011. Response of broiler chicken to dietary supplementation of organic acids. J Central Eur Agric., 12(3):498–508.
- Adil, S.; Tufail, B.; Gulam, A. B.; Masood, S. and Manzoor, R., 2010. Effect of dietary supplementation of organic acids on performance, intestinal histomorphology, and serum biochemistry of broiler chicken. Vet Med Int., :1–7. Article ID 479485.
- Al-Kassi, A.G and Mohssen, M.A. 2009. Comparative study between single organic acid effect and synergistic organic acid effect on broiler performance. Pak, J Nutr, 8:896-899.
- Ao,T.,Cantor, A.H., Pescatore, A. J., Ford, M. J., Pierce, J. L. and Dawson, K. 2009. Effectof enzyme supplementation and acidification of diets on nutrient digestibility and growth performance of broiler chicks. Poult. Sci., 88: 111-117.
- Banerjee, GC. 2007. A text book of Animal Husbandry. (8 How to cite this article: Ndelekwute EK, Enyenihi GE, Essien E.B, Effiong B E. Effect of

Acid Treated Diets Fed Organic During Finisher Phase on Gut Microbiota and Blood Profile of Broiler Chickens. Dairy and Vet Sci J. 2018; 5(4): 555668. DOI: 10.19080/JDVS.2018.05.555668 th edn), Oxford and IBH Pub Co Pvt Ltd, New Delhi, India, pp. 450-467.

- Baurhoo, **B.**; Ferket, P.R. and X. Zhao, **2009.** Effect of diet containing different concentrations of mannan oligo saccharide or antibiotics on growth performance development, cecal intestinal and litter microbial populations, and carcass parameters of broilers. Poult. Sci., 88: 2262-2272.
- Clark, P., Boardman, W. and Raidal, S. 2009. Atlas of clinical avian hematology. Wiley- Blackwell, Ames (IA); 33–53.
- **Dawson, K. A. 1993.** Current and future role of yeast culture in animal production: A review of research over the last seven years. Pages 169–171 in Biotechnology in the Feed Industry. Proc. 9th Annual Symposium. Alltech Technical Publications, Nicholasville, KY.
- **Denil, M., Okan, F. and Celik, K. 2003.** Effect of dietary probiotic, organic acids and antibiotic supplementation of diets on broiler performance and carcass yield. Pakistan Journal of Nutrition, 2:89-91.
- **Duncan, D.B. 1955.** Multiple range and multiple F tests. Biocmtrics, 11:1-42.
- Elagib, H., El-Amin, W. and Malik, H. E. 2013. Effect of dietary garlic (Allium sativum) supplementation as feed additive on broiler performance and blood profile. J Anim Sci Adv; 3: 58-64.
- Eltazi, S.M., Mohamed, K.A. and Mohamed, M.A. 2014. Response of

Propionic acid - live yeast (Saccharomyces cerevisae) - Broilers - Performance.

Broiler Chicks to Diets Containing Live Yeast as Probiotic Natural Feed Additive. International Journal of Allied sciences, V. 3, 40-46.

- Flickinger, E. A. and Fahey, G.C. 2002. Pet food application of inulin, oligo fructose and other oligosaccharides. British Journal of Nutrition; 87:S297-S300. 378.
- Fuller, R. 1989. Probiotics in man and animals. Journal Applied of Bacteriology, 66:365-378.Gálik, B. and Rolinec, M. 2011. The effect of phytogenic feed additives on the performance of non ruminants, Proc. International Ph.D. workshop on welfare, biotechnology and quality of production, Nitra, Slovak animal University of Agriculture, 19.
- Gao, Y.P. and Qi, G.H. 2008. Effect of yeast culture in boiler diets on performance and immune-modulatory functions. Poult. Sci., 87: 1377-1384.
- Ghazalah, A. A.; Atta, A.M.; Kout-Elkloub, M. El. Moustafa, and Riry, F.H. Shata 2011. Effect of dietary supplementation of organic acids on performance, nutrients digestibility and health of broiler chicks. Int. J. Poult. Sci., 10: 176-184.
- Hadj Ayed M., Kraiem, K. and Rekik,
 B. 2010. Effects of incorporating safmannan in broiler diets on birds' performances and carcass parameters. XIIIth European Poultry Conference. 23-27 August. Tours, France.
- Hadj Ayed M., Laamari, Z. and Rekik,
 B. 2004. Effects of incorporating an antibiotic "Avilamycin" and a probiotic "Activis" in broiler diets. Proceedings, Western Section, American Society of Animal Science. Vol. 55.

Hampson, D. 1986. Inverse velocity

stacking for multiple elimination, Journal of canadian Soc. Expl. Geophys., 22, 1: 44-55.

- Hashemi, S. 2010. Davoodi H. Phytogenics as new class of feed additive in poultry industry. J. Anim. Vet. Adv., 9: 2295-2304.
- Hassan Rasha, M. I., Mosaad, G. M. M., and Abd-Ellah, A. M. 2016. Effect of feeding citric acid on performance of broiler ducks fed different protein levels. J.adv. vet. Res. 6:18-26.
- Hossain, M.E. and Nargis., F. 2016. Supplementation of organic acid blends in water improves growth, meat yield, dressing parameters and bone development of broilers.Bang. J. Anim. Sci., 45 : 7-18.
- Kamal, Azza M., and Ragaa, Naela M. 2014. Effect of dietary supplementation of organic acids on performance and serum biochemistry of broiler chicken. Nat. Sci., 12 (2): 38-45.
- Kocher, A.; Canolly, A.; Zawadzki and Gallet, D. 2004. The challenge of finding alternatives to antibiotic growth promoters international society for animal hygiene – Saint Malo, 227-229.
- Král, M., Angelovičová, M., Mrázová,
 Ľ., Tkáčová, J. and Kliment, M.
 2011. Probiotic and acetic acid of broiler chickens performance. Sci. Papers Ani. Sci. Biot., 44: 149-152
- La-Reguibe, R. M. and Woodward, M. J. 2003. Competitive exclusion by Bacillus subliles spores of Salmonella enterica Serotype enteritidis and Clostridium perfringens in young chicken. Veterinary Microbiology, 94: 245-256.
- Line, J.E., Bailey, J.S., Cox, N.A. and Stern, N.J. 1997. Yeast treatment to

reduce salmonella and campylobacter population associated with broiler chickens subjected to transport stress. Poult. Sci., 76:1227-1231.

- Lutful-Kabir, S.M. 2009. The role of probiotics in the poultry industry. International Journal of Molecular Science, 10: 3531-3546.
- Nasiroleslami, M. and Torki, M. 2010. Including Essential Oils of Fennel (Foeniculum Vulgare) and Ginger (Zingiber Officinale) to Diet and Evaluating Performance of Laying Hens, White Blood Cell Count and Egg Quality Characteristics. Adv Environ Biol; 4: 341-345.
- Ndelekwute, EK., Ebenso, IE., Okereke, CO. and Assam, ED. 2016. Serum biochemistry, haematology and gut ecosystem of broiler chickens fed. This work is licensed under Creative Commons Attribution 4.0 License DOI: 10.19080/JDVS.2018.05.555668 diets treated with organic acids. Nig .J. Agric. Food and Environ., 12(1): 32-36.
- N.R.C., 1994. National Research Council. Nutrient Requirements of Poultry. 9th Ed. National Academy of Sciences.
- Parvad, A. and Mahmoudi, M. 2008. Effect of different levels of supplement veast (saccharomyces cerevisiae) on performance, blood constituents and of broiler. carcass characteristics African Journal Agriculture of Research, 3(12): 835-842.
- Petruška, P., Tušimová, E., Kalafová, A., Haščík, P., Kačániová, M., Kolesárová, A. and Capcarová, M. 2012. Effect of propolis in chicken diet on selected parameters of mineral profile. J. Micr. Biot. Food Sci., 1:1090-1097

- Pirgozliev,V., Murphyt, T. C., Owens, B., George, J. and Mccann, M. E. E. 2008. Fumaric and ascorbic acid as additives in broiler feed. Res. Vet. Sci., 84: 387.
- **Rolf, R.D. 2000.** The role of probiotic cultures in the control of gastrointestinal health. J. Nutr., 130: 3965-4025.
- Saarela, M., Mogensen, G., Fonden, R., Matto, J. and Mattila- Sandholm, T. 2000. Probiotic bacteria: safety, functional and technological properties. J. Biotechnol, 84: 1975.
- Santin, E.; Maiorka, A.; Macari, M.; Grecco, M.; Sanchezi, J.C.; Okada, I.M. and Myasaka, A.M. 2001. Performance and intestinal mucosa development of broiler chickens fed diets containing saccharomyces cerevisiae cell wall. J. Appl. Poult. Res., 10: 236-244.
- **SAS Institute, 2004.** SAS User, s Guide: Statistics. Version 5 Editin. SAS Institute Inc., Cary, NC, USA.
- Shashidhara, R., and Devegowda, G. 2003. Effect of dietary mannan oligosaccharide on broiler breeder production traits and immunity. Poultry Science, 82: 1319-1325.
- Sheikh, A., Banday, T., Bhat, G. A., Salahuddin, M., Raquib, M., and Shanaz, S. 2011. Response of broiler chicken to dietary supplementation of organic acids. J. Cen. Eur. Agri.,12: 498-508.
- Skrivanova, E. and Marounek, M. 2007. Influence of pH on antimicrobial activity of organic acids against rabbit entero pathogenic strain of Escherichia Coil. FoliaMicrobiologica, 52: 70-72.
- Smirnov, A., Sklan, D. and Uni, Z. 2004. Mucin dynamics in the chick small intestines are altered by

Propionic acid - live yeast (Saccharomyces cerevisae) - Broilers - Performance.

starvation. J. Nutr., 134: 736-742.

- Smirnov, A., Tako, E., Ferket, P.R. and Uni, Z. 2006. Mucin gene expression and mucin content in the chicken intestinal goblet cells are affected by in ovo feeding of carbohydrates. J. Poult. Sci., 85: 669-673.
- Spring, P.; Wenk, C.; Dawson, K.A. and Newman, K.E. 2000. The effects of dietary mannanoligosaccharides on cecal parameters and the concentration of enteric bacteria in the ceca of salmonella challenged broiler chicks. Poult. Sci., 79: 205-211.
- Stanely, V.G., Gray, G., Daley, M., Frueger, W. and Sefton, A.E. 2004. an alternative to antibiotic-based drugs in feed for enhancing performance of broiler grown on Emeria sppinfected litter. Poult. Sci., 83: 39-44.
- Talebi, E., Zarei, A., and Abolfathi, M.E. 2010. Influence of three different organic acids on broiler performance. Asian, J. Poult.Sci.,4:7-11.
- Toms, C. and Powrie, F. 2001. Control of intestinal inflammation by regulatory T cells. Microbes Infect, 3: 929-935.

- Young, KM. and Foegeding, P.M. 1993. Acetic, lactic and citric acids and pH inhibition of Listeria monocytogenes Scott and the effect on intracellular pH. J Appl Bacteriol; 74: 515-520.
- Zareshahneh, A.K., Abdelahi, M.R., Kamyab, A.R. and Nikkhah A. 2007. Effect of different levels of bacterial probiotics on broilers performance and some of blood factors. J. Agric. Sci. Nat Res; 14:162-170.
- Zhang, A.W., Lee, B.D., Lee, S.K., Lee, K.W., Song, K.B. and Lee, C.H. 2005. Effects of yeast (Saccharomyces cerevisiae) cell components on growth performance, quality, and ileal mucosa meat development of broiler chicks. Poultry Science, 84: 1015-1021.

الملخص العربي

تقييم إستخدام حامض البروبيونيك والخميرة الحية في علائق منخفضة في البروتين والطاقة على التيم إستخدام حامض البروتين والطاقة على

محمد عبد العظيم محمد موسى

معهد بحوث الانتاج الحيواني – مركز البحوث الزراعية – الدقي – الجيزة

الهدف من هذه الدراسة هو تقييم تأثير إضافة حمض البروبيونيك أو الخميرة الحية أو مزيج منهما الى علائق دجاج التسمين المنخفضة في البروتين والطاقة على الأداء الانتاجي ، وخصائص الذبيحة ، وبعض صفات الدم والكفاءة الاقتصادية . تم توزيع 240 من كتاكيت التسمين التجارية عشو ائياً الى ثماني مجمو عات ، كل منها يحتوي على ثلاث مكررات بكل مكررة 10 كتاكيت. تم التغذية على 8 معاملات غذائية ، مجموعة (1) الكنترول ، مجموعة (2) كنترول + 0,2 ٪ حمض البروبيونيك، مجموعة (3) كنترول + 0,2% خميرة حية, مجموعة (4) كنترول + 0,2 ٪ حمض البروبيونيك + 0,2% خميرة حية, مجموعة (5) كنترول مع تقليل البروتين 1,5٪ وتقليل الطاقة 200 كيلو كالوري/كجم عليقة ، مجموعة (6) العليقة المنخفضة في البروتين والطاقة + 2,0% حمض بروبيونيك ، مجموعة (7) العليقة المنخفضة في البروتين والطاقة + 0,2% خميرة حية و مجموعة (8) العليقة المنخفضة في البروتين والطاقة + 0,2% حمض بروبيونيك + 0,2% خميرة حية. أظهرت النتائج ان الطيور التي تغذت على كل الإضافات حققت أعلى زيادة في وزن الجسم مقارنةً بالكنترول أو الكنترول منخفض البروتين والطاقة. وأظهرت النتائج ان الغذاء المستهلك زاد معنويا في المجموعة (4) بالمقارنة بباقي المجموعات. ايضا انخفض الغذاء المستهلك في المجموعات 5 و 6 و 7 بالمقارنة بباقي المجموعات ولاتوجد اي اختلافات معنوية بين المجموعة 8 والكنترول تحسنت نسبة التحويل الغذائي في الطيور التي تغذت على كل الاضافات مقارنة بالكنترول او الكنترول منخقض البروتين والطاقة. لم يلاحظ أي تأثير معنوى في خصائص الذبيحة (الكبد ، والقلب ، والقانصة) ، ودهن البطن بين كل المجموعات بما في ذلك الكنترول أو العليقة المنخفضية في البروتين والطاقة في حين أن جميع الإضافات أثرت معنويا في نسبة التصافي و إجمالي الأجزاء الصالحة للأكل مقارنةً بالكنترول أو العليقة المنخفضة في البروتين والطاقة. ادت اضافة حامض البروبيونيك أو الخميرة الحية أو مزيج منهما الى زيادة KBCs ، PCV ، Hb ، RBCs، مقارنة بالكنترول. اظهرت النتائج زيادة معنوية في البروتين الكلي والجلوبيولين وانخفاض معنوى في الكولستيرول الكلي والليبدات الكلية مع كل الاضافات مقارنة بالكنترول او الكنترول منخفض البروتين والطاقة. اظهرت كل الاضافات تأثيرا معنويا في الاجسام المناعية لمرض النيوكاسل. سجلت الطيور التي تغذت على اضافة البروبيونيك او الخميرة او خليط منهما الى العليقة منخفضة البروتين والطاقة أفضل القيم لكل من الكفاءة الإقتصادية (EEf) والكفاءة الاقتصادية النسبية (REEf) مقارنة بالمجمو عات الأخرى . بصفة عامة فإن اضافة حامض البروبيونيك او الخميرة الحية إما كلا على حده أو مزيج منهما الي علائق تقل في محتواها من البروتين والطاقة يمكن ان يحسن الاداء الانتاجي وخصائص الذبيحة وبعض صفات الدم وتعزيز المناعة ويمكن ان يكون بديلا جيدا للمضادات الحيوية المستخدمة في تحسين الاداء الانتاجي لدجاج التسمين.