(2001-1074)

Egyptian Poultry Science Journal

http://www.epsj.journals.ekb.eg/

ISSN: 1110-5623 (Print) – 2090-0570 (Online)

INTEGRATION OF QTL DETECTION OF GROWTH TRAITS AND ASSOCIATION STUDY FOR CHICKEN CHROMOSOME 4 Tarik Rabie^{1*}, Ahmed Soliman²

¹Dep.of Anim. Prod. and Fish Res., Fac. of Agric., Suez Canal Uni., Ismailia, 41522. Egypt. ² Dep. of Poult. Prod., Fac. of Agric., Alexandria Uni.,

Alexandria, Egypt.

Corresponding author: Tarik Rabie: E-mail: <u>tarik.rabie@agr.suez.edu.eg</u>

Accepted: 15/11/2019 Accepted: 15/12/2019

ABSTRACT: Quantitative trait locus (QTL) mapping opens a way for breeders to manipulate quantitative trait genes. The objective of this study is to detect the QTL related to growth performance in local breeds of chicken. A cross between three genetically different chicken' breeds was used to produce two generations populations. Total of 16 Saso cocks, and 32 hens (16 of each of Alexandia and Fayoumi) as parents were used to produce first generation (G1). Data of 954 chicks produced during the auxiliary two generations of different crosses (S \diamond xF \Leftrightarrow , S \diamond xA \Leftrightarrow , SF \diamond xSF \Leftrightarrow , SA \diamond xSA \uparrow , SF \diamond xSA \uparrow and SA \diamond xSF \uparrow) in such a way the genetic homogeneity from G0 to G2 recombinant populations has been considered. These populations were used for detection and localization of QTL related to the growth traits; body weight (BW), growth rate (GR), and average daily gain (ADG). A number of 25 microsatellite markers belong to chicken chromosome 4 (GGA4) have been genotyped, and the regression interval mapping approach was used to identify QTL. The results revealed that all selected markers were informative. There was a statistical evidence for OTL on GGA4 for BW at 8 and 12 weeks of age, whereas one QTL exceeded the significant threshold for the trait of BW at 8 weeks of age. The related trait, growth rate, reached the suggestive threshold. All of three QTL effects identified on GGA4 had their maximum test statistic in the region between 134-154 cM. In addition, most of significant markers (MCW0390, MCW0393, MCW0397, MCW0409, MCW410 and UMA0038) were associated with growth traits at all chicken ages. Although, the polymorphism information content (PIC) obtained over all microsatellite markers was 46%, that around 82% went to UMA0038 locus. Two private alleles were found for markers MCW0405 and MCW0409 with allele frequency around 0.025 in G_1 and G_2 respectively. Additionally, Chi-square test was used to investigate the deviation of loci from Hardy-Weinberg equilibrium individually, and four microsatellite markers (MCW0395, ADL0266, MCW0400 and UMA0038) were not in genetic equilibrium. In addition, analysis of molecular variance (AMOVA) revealed that 14% and 86% of variance were observed among and within individuals, respectively. The obtained small value of F_{ST} (ranged between 0.001 to 0.019) may reflect generous genetic differentiation. In conclusion, the recognized QTL, integrated with the association study, gave useful and practical information to distinguish molecular genetic factors that influence growth traits within the local populations of chicken.

Key words: Poultry, QTL, Microsatellite markers, Crossing, Growth, GGA4

INTRODUCTION

Among domestic animals, the chicken is ideal for genetic mapping and QTL analysis because of their high reproductive capacity, enabling several generations of large families to be generated in a reasonable timeframe. In addition, chicken is unique among agriculture species in that a number of selection lines are available. The diploid karvotype of chicken is comprised of eight pairs of macro-chromosomes, thirty pairs of micro-chromosomes, and two sex chromosomes. Micro-chromosomes are estimated to comprise 30% of genome, but they include 40% of the genes (Brown et al. 2003). The relatively small size of the haploid chicken genome (1.2x109 bp) as compared to that of mammals (3 x 109 bp) is a big advantage for subsequent research aiming the identification for and characterization of the genes underlying the QTL effects. In poultry, few genes with economical importance have been identified, e.g., the dwarf gene and sexlinked feathering genes. Many studies have reported an association between genetic markers and quantitative traits of economic importance (Liu et al., 2008; Zhang et al., 2008 and Sandercock et al., 2009; Nassar et al. 2015; Lvu et al. 2017). In the presence of known linked markers or genes affecting traits of interest, marker assisted selection (MAS) could support the traditional breeding system. Selection of the best animals using molecular information at DNA level can help to prevent alleging of high generation interval, low heritability of traits, and the nature of the traits to be sex limited. Primarily, microsatellite markers are highly polymorphic, meaning that there are many possible alleles at each locus that each animal can have. In chicken, numerous microsatellites have been mapped in reference populaces (Cheng et al. 1994, Crooijmans et al. 1993, 1996; Groenen et al. 2000; Rabie et al. 2005). These markers give

an effective device to either quantitative genetics and fine mapping approaches (Rabie et al., 2005; Lvu et al., 2017), and have already been used effectively to focus on the hereditary relationships between and inside chicken populaces (Rosenberg et al. 2001; Vanhala et al. 1998; Zhou et al. 1999). The direct application of a molecular technique is a candidate gene approach that represents an effective approach to identify genetic markers associated with economically valuable production traits in livestock (Rothschild and Soller, 1997). Subsequently, a QTL on chromosome 4 influencing (GGA4) chicken growth performances until 20 weeks of age in F2 cross between the inbred New Hampshire (NHI) and White Leghorn (WL77) lines was detected with confidence in an 26.9 Mb interval between 61.5 and 88.4 Mb, in which 292 genes are residing (Nassar et al. 2015). The same QTL region was identified in other chicken populations, for instance in Silky Fowl x White Plymouth Rock cross (Gu et al. 2011) and Beijing-You chickens (Liu et al.2013). These QTLs were identified from phenotyping and genotyping of crosses between two breeds or two lines within the same breed. Moreover, many of the major genes and their variants reliable for growth traits in chicken have not been realized yet. Therefore, there is a subsistent need to conduct further studies for detecting part or all of genomic regions which clarify most of the genetic variations in desired traits. Despite of the great efforts made globally to reveal genetic loci affecting economically important traits related to growth in chicken, the goal of the current study is to identify QTL related to growth performance on chicken chromosome 4 that explain differences between indigenous lines that have been selected for many generations.

MATERIALS AND METHODS Experimental population and phenotyping

This study was conducted at the poultry research center, department of poultry faculty of production, agriculture, University, Alexandria and the biotechnology laboratory, department of animal Production, faculty of agriculture, Suez Canal University. The experimental population used to recognize the QTLs identified with growth performance i.e., body weight (BW), growth rate (GR), and average daily gain (ADG) was dependent on two generations (G_1 , and G_2). Whereas, G_2 was based on 16 males from Sasso line (S). and 16 females from each of Alexandia (A) and Fayoumi (F). Two females (One Alexandria and one Fayoumi) were randomly assigned to each Sasso male to produce the G_1 . The G_2 was generated according to the mating system (SF \diamond x SF Υ , SA \diamond x SA Υ , SF \diamond x SA Υ and SA \diamond x $SF \stackrel{\circ}{\rightarrow}$). The trap nested eggs which were delivered from each exclusive breeding pen have been gathered and recorded daily for 7 consecutive days by genetic group. Eight hatches were taken biweekly in each generation. At hatching, the chicks were labeled with wing-banded, weighed, and brooded on floor, of 32°C gradually decreased 2-3°C weekly until reaching the normal temperature. At age of eight weeks, the chicks were sexed, weighed and moved to the rearing house. Individual chick BW was recorded to the nearest gram at hatching (day 0) then of 4, 8, and 12 weeks. Periodical GRs were estimated from day 0 to 4 wks (GR₀₋₄), from 4 to 8 wks (GR₄₋₈), from 8 to 12 wks (GR₈₋₁₂) and from day 0 to 12 wks (GR₀₋₁₂) of ages according to Brody (1945). In addition, the respective ADGs were calculated for each line (ADG_{0-4}) , ADG₄₋₈, ADG₈₋₁₂, and ADG₀₋₁₂).

Blood samples, and DNA extraction

A total of 160 blood samples were collected from the wing vein (42 from G_0 , and 118 samples from G_1 , and G_2), and were collected in a tube treated with K3-EDTA (FL medical, Italy) and stored at -20°C until DNA extraction. Genomic DNA was extracted using PureLink Genomic DNA Mini; Microcentrifuge spin-column format (Invitrogen[™] K182001, USA) to provide superior performance and high purity and yield of extracted DNA. The quality of DNA was examined extracted by NanoDrop® ND-1000 UV-Vis Spectrophotometer enabling highly accurate analyses with remarkable reproducibility.

Selection of markers and genotyping

Twenty-five microsatellite markers were selected along chromosome 4 (GGA4) according to their potential for detection, viability, and expected coverage of heterozygosity. Table 1 showed more information about the markers. The PCR reactions were performed in a 25µl final volume containing 6µl of 100 ng of DNA, 6 ul of the PCR Super Mix contained 1.1x buffer (Invitrogen, 10572-014), forward and reverse primers (0.2 - 1 uM each), and nuclease-free dH2O to final volume of 25 ul. An Eppendorf thermal cycler was used along with the following PCR profile settings: 5 min at 95°C followed by 35 cycles for 30 sec at 95°C, 45 sec at 45°C, 50°C, or 55°C annealing temperature, and 90 sec at 72°C, followed by an elongation step at 72°C for 10 min, and finally stop step at 4°C. Subsequently, PCR products were electrophoresed on 1.5% agarose gel containing 0.5% ethidium bromide which viewed under UV light. Therefore, genotyping of the microsatellite markers was done using QIAxcel advanced system.

Statistical analysis

QTL Analysis

Total of 89 selected genotypes (22 G₀, 26 G₁, and 41 G₂) were used for QTL analysis combined with total of 25 informative markers mapped on GGA4. Linkage distance among loci was estimated by the Multilocus 1.3 (Agapow and Burt 2001) using the marker genotypes for all these markers and all individuals, the map distances given in centimorgans (cM) on haldane scale (Haldane 1919), was drawn using Mapchart 2.32 (Voorrips, 2002). The QTL examination was attempted with the regression interval mapping approach following the proposal of Van Kaam et al., (1998). This technique is an expansion of the strategy of Knott et al., (1996) for multimarker regression method for outbred populaces with a half sib family structure. The significance thresholds for the test statistics were empirically derived using the permutation method outlined by Churchill (1994). The and Doerge 5% chromosomewise thresholds were determined performing 1000 by permutations at 5 cM interims. A test statistic was calculated at each cM in order to test the presence of QTL effects, against the null hypothesis of their absence.

Association between phenotypes and segregated alleles

From the observed codominant markers data, the deviations from Hardy-Weinberg equilibrium (HWE), the observed and effective () number of alleles (*No* and *Ne* respectively), the observed and the expected heterozygosity (*Ho* and *He* respectively), and polymorphism information content (*PIC*) were assessed using Cervus 3.0.7 software (Kalinowski *et al.*, 2007). The F-statistics of pairwise genetic differentiation among the populations (F_{ST}), the decrease in heterozygosity because of inbreeding within a population (F_{IS}) were determined. Consequently, the association between

microsatellite markers and growth traits at interval weeks were evaluated with the generalized linear model. The statistical model was based on that described by Ma *et al.* (2014) with amendment. Followed by multivariate analysis of variance analysis which was implemented by R (Core R Team, 2013) using "mvtnorm" package for the association between detected alleles and phenotype observations.

RESULTS AND DISCUSSION Genetic assortment based on microsatellite markers:

Genetic assortment based on microsatellite markers: Twenty-five microsatellite markers have been used, and successfully tested on chicken genomic DNA. All analyzed markers were informative. Therefore, allele frequencies for all loci were analyzed and the markers' characteristics such as No, PIC, private alleles (PA), Ho and He across all generations are given in Table (2). Although, the obtained PIC over all positions was 46%, that for UMA0038 marker was around 82%. This in agreement with Rabie et al., (2005) who reported that the average *PIC* in chickens in the first generation ranged from 53 to 83%. In addition, Hillel et al. (2003) obtained 69% of PIC when 22 microsatellite markers were used for a diversity study. The obtained average of number of alleles per locus was 3.52 ± 0.28 , with a mean proportion of typed loci 0.94 similar to those obtained by both Roushdy et al., (2013a,b), and Soltan et al. (2018) when they studied local Egyptian's chicken populations, it ranged from 4.2 to 13.8. A total of two PA was found and distributed in G_1 for MCW0405 with allele frequency 0.024, and for MCW0409 in G₂ with allele frequency 0.025 (Figure 2). The percentage of PA was around 2.27% which was lower than those recently detailed in Egyptian local chicken breeds the scope of 13.18 to 45.28% of total alleles (Soltan et al. 2018; and Roushdy et al., 2012a). This was

probably due to crossing between divergent chickens, and the modest number of samples analyzed per generation, that utilized for the analysis. Mean of the detected number of alleles per locus (Na) was 3.52±0.28 (Table 2). Allelic patterns for co-dominant data are shown in Figure (1). In general, F_{ST} value lower than 0.05 may reflect substantial genetic differentiation. Surprisingly, in this study F_{ST} value averaged 0.007±0.001, despite the fact that, this value estimates the level of genetic differentiation, it reflected a slight genetic contrast with the utilized locus (Balloux & Lugon-Moulin, 2002). In addition, to measure the degree of molecular diversion, locus-by-locus investigation on molecular variance (AMOVA) was executed and the outcomes illustrated that the differentiation between generations was null for the total genetic variance, while 14 and 86% of change was observed among, and within individuals respectively (Table 3) whereas, these results were far from the findings of El-Sayed et al. (2011), Eltanany et al. (2011), and Soltan et al. (2018) for local Egyptian strains. Additionally, to investigate the deviation of loci from Hardy-Weinberg equilibrium (HWE) individually, Chi-square test was used, and the results are shown in Table 2. Across all used loci, four microsatellite markers MCW0395, ADL0266, UMA0038 (P≤0.05), and MCW400 (P≤0.001) were not in genetic equilibrium. In addition. the intergenetic population differentiation coefficient (G_{ST}) values were mostly negative. Despite of the distributional range, estimation inter-population the of examination supports low degree of genetic separation between these generations. The F_{ST} comparisons of the entirely unexpected components of the genome will offer bits of knowledge into the statistical history of populations (Holsinger and Weir, 2009). The current low F_{ST} value (0.001 to 0.019) formulated slight hereditary contrasts as indicated by the utilized microsatellite markers (Balloux and Lugon-Moulin, 2002) and low values reflected generous genetic differentiation. Also, the low non-significant F_{ST} values suggested that the genotype of the individuals of the studied generations were closely related to each other.

QTL analysis

Eleven traits related growth genotypes of 89 individuals were used in this study. The acquired QTL with significant and suggestive linkages for each trait are summarized in Figure 2. There was significant statistical evidence for two growth-related traits on GGA4. А significant linkage with BW8 situated on GGA4 in the middle of 134-154 cM (MCW400 -MCW395) was observed. Suggestive linkage was noted for BW12 (UMA0038 -MCW0404) at position 145 cM. In addition, suggestive QTL for GR0-4 was detected at position 154 cM (LEI0094-MCW0395). Details of the markers flanking each QTL, and their position on the chromosome are presented in Figure 2. Similarly, Nassar et al. (2015) reported that most elevated QTL impacts for the phenotypic F2 variance (from 4.6 to 25.6%) were found on GGA4 somewhere in the range of 142 and 170 cM. Furthermore, the confidence interval for the QTL region on GGA4 is located between 61.5 and 88.4 Mb in the chicken genome and harbours 292 genes

(http://www.ensembl.org/Gallus_gallus/).

Similar patterns of QTL were found by Cahyadi *et al.* (2016) through improving the Korean native chicken, twelve microsatellite markers have been used on GGA4, where the QTL was discovered to influence BW4 and BW8. The QTL was situated between 23 and 37 cM on GGA4, while the QTL peak was the nearest to the ADL0203 marker. In addition, Cahyadi *et al.* (2016) found a positional candidate gene located in the QTL region on GGA4 for

growth- related traits at 6 to 8 weeks of age, moreover, Nassar et al. (2015) declared the QTL that essentially influence growth from 5 to 20 weeks on the genomic region somewhere in the range of 153 and 159 cM on GGA4 a peak exist in the range of 75.24 and 79.39 Mb. Table 4 briefs the detected OTLs situated on chicken chromosomes at different ages from several different genetic resources and crosses. Moreover, Wang et al. (2012) using F2 population cited that there were three significant QTLs and 10 others at suggestive level on chromosome 3 and 4. Strikingly, a QTL for BW at 12 weeks of age situated on GGA4 had a significant additive substance impact which clarified 13.8% of the phenotypic variation, although, the biggest dominance effect for OTL represented 6.5% of the phenotypic variation (Khalil et al. 2016). Moreover, the low heterozygosity between the studied generations (Figure 3) might indicate the absence or not reaching the significance threshold of QTL for GR and ADG. In addition, the means of the expected and observed heterozygosity for the markers across the generations in Table 2 being about 0.54, may be due to the minute inspected samples and genotypes.

Association between the locus and growth traits.

Chicken BW isa polygenic inheritable trait, which takes a long time to be improved. Integration of the molecular marker technology and its relatedness to growth will contribute to more practical selection for growth traits in broilers (Deeb and Lamont, 2002; Sazanov et al., 2010). In the current study, the performed association analysis between the 25 loci and the growth-related traits indicated that most of the associated markers were located within the detected QTL region, whereas 13 markers were in the flanked area between MCW400 and MCW395. While the percentage of the associated markers 26.67% for chicken GR, and 33.3% for ADG to 53.3% for BW at different ages. The significant and highly significant association between markers and traits are shown in figure 1. Interestingly, most of the significant associations for GR and ADG were in between markers MCW0390, MCW0393, MCW0397, MCW0409, and MCW410 while UMA0038 was associated with BW at all ages studied. (0, 4, 8, and 12 weeks of age). This locus located on GGA4 at 48 Mb, in relation to the two genes PPA1K, ADGRL3 which might be related growth-traits also to (https://www.ensembl.org/Gallus gallus/). The positional candidate gene (s) on GGA4 within the QTL region is also related to growth traits in local chicken. Cahyadi et al. (2016) found a potential candidate gene, the insulin receptor substrate 4 gene (IRS4) that plays a notable responsibility not only in growth, but also in reproduction and glucose homeostasis (Sadagurski et al., 2014). Somewhere, it acts as an interface between multiple growth factor receptors such as insulin-like growth factor 1 receptor (IGF1R), and fibroblast growth factor receptor 1 (FGFR1) which showed an important role in cell development, in addition, metabolic homeostasis, growth, and reproduction (Hinsby et al., 2004).

Furthermore, the detected QTL in this study (42.5 - 50.5 Mb), the candidate genes such as PDGFRA (platelet-derived growth factor receptor, alpha polypeptide; Locus: 4q12), also IGFBP7 (insulin-like growth factor binding protein 7; Locus: 4q12) was found (https://www.ensembl.org/Gallus gallus/Locati on/). Nevertheless, the region harbours several functional candidate genes, so that fine mapping is important to physically decrease the chromosomal interim and along these distance the potential candidate genes that demonstrate either individually or in interactions could be detected.

IN CONCLUSION,

for the effective usage of QTL data into particular breeding programs, segregation of QTL should be approved within the population in interest. Along these lines, the recognized QTL areas in this study utilizing useful and practical information to distinguish molecular genetic factors that influence growth traits within the local populations. In addition, the data from this investigation will add to endeavors to improve the body weight in local chicken breeds.

Locus	forward primer (5'-3')	reverse nrimer (5'-3')	Mh1	Tm ²
name	for ward primer (5 -5)	reverse primer (5 -5)	1410	1 111
ADL0246	GCAGGCTGATAGAAAAATGC	CTGCAAGCTGCTCTGGTATT	37.66	55
MCW0408	GGTGCTACACGAAGGTACTG	TTTCTGAGCTGCTTGTCCTC	38.27	55
MCW0085	GTGCAGTTATATGAAGTCTCTC	GGTATCAGGGCTTCTGAAACA	38.79	50
MCW0410	CACGAAGAAGAAGAACCTTCC	CACCTCCTGTGTTGGTCCAG	39.84	55
MCW0398	GTTCTTCCATCAGAGCACAG	GGAGCGTAGACTGTATCAGG	40.56	55
LEI0122	AATCCCTATAGAACTTTGTGC	GATCTTACTGGATTACCATTC	40.91	55
MCW0396	CTCACTTTCTGCAGTTACCC	CTGGTGACACCTTCAAACTG	42.14	50
MCW0400	GGATTTATCCCATGCCTCAG	GGGACAGAGAGAAGCAGTGG	42.50	55
MCW0397	TGAGTCAGGCTTGATTCTGC	ACCACCCCTCACATGGATTC	43.07	50
MCW0401	GAGTGGAATTACCGGAGAAC	CTAGCTACTGTTAGGTGGAG	44.31	50
MCW0390	TACTACACAACCCCCTCTAC	GACTAATTCAGGGTGCTCTC	44.52	50
MCW0402	ACTGTGCCTAGGACTAGCTG	CCTAAGTCTGGGCTCTTCTG	44.72	55
ADL0266	GTGGCATTCAGGCAGAGCAG	AATGCATTGCAGGATGTATG	45.52	55
MCW0391	AGGATTACCAGCTCCCAGAC	CTTTTCACTGCTCCGTAGAC	46.20	50
MCW0405	GGAGCTGAGATTTGTTGAGC	GCTGCAAGGTGAAGGAAAAC	46.71	55
UMA4.038	CATTTGCAAGTGCCATACAG	GCCCTGGTAAACTGGTGTCC	46.71	45
MCW0404	GCACAGACTAAACCTTGCTC	GTTAGTAAGCAGGGGGTCTG	47.69	55
MCW0403	GGTACGGAAGAACTGATAGG	GACATGGTAGAACTGCAAGG	47.83	55
MCW0393	GGGAGAGGTGAGACAGATAG	TCTAGAGGAGGCTTTGCTAC	48.24	50
MCW0394	ATCAAGTCCTCCGATACTGC	GAACAACTGGCTAGGCTAAG	50.15	50*
LEI0094	GATCTCACCAGTATGAGCTGC	TCTCACACTGTAACACAGTGC	50.33	55
MCW0395	TGCTTGTGCAGAGATGAAGC	AGTAAGTACAGAGCCACTGC	50.50	50
MCW0411	GAAGGTCTCCCAGCTATAAG	TTTGGTGTGGGGTAGAAGGTG	50.89	50*
MCW0409	GCACACTGAGCTACCTTTAG	GTTCTGGAGAAGACTGCTTG	51.05	50
MCW0284	CAGAGCTGGATTGGTGTCAAG	GCCTTAGGAAAAACTCCTAAGG	53.60	50

Table (1): Molecular characteristics, information and annealing temperature for microsatellite loci belong to chicken chromosome 4.

¹The position of marker in Mb according to chicken genome sequence data. ² The optimal annealing temperature in the PCR reaction, the temperature that marked with asterisk needed more elongation time compared to other markers.

Microsatellite	Mean	Mean Ma	Maan Na	Mean	Mean	11	F	F	C	DIC	HUVE
marker (Locus)	Ν	Iviean Iva	wiean we	Но	He	$\mathbf{\Pi}_{t}$	F IS	F ST	GST	PIC	HWE
MCW390	88	4.000	3.235	0.781	0.687	0.695	-0.137	0.011	0.001	0.639	NS
MCW391	88	5.000	2.003	0.546	0.498	0.500	-0.097	0.005	-0.007	0.461	NS
MCW393	87	4.000	2.325	0.593	0.566	0.571	-0.048	0.009	-0.003	0.524	NS
MCW394	83	3.000	1.898	0.560	0.472	0.474	-0.185	0.003	-0.008	0.375	NS
MCW395	88	3.000	2.632	0.525	0.618	0.623	0.151	0.008	-0.006	0.546	*
MCW396	84	2.000	1.289	0.223	0.224	0.224	0.004	0.001	-0.013	0.202	NS
MCW397	88	3.000	1.986	0.468	0.489	0.495	0.043	0.012	-0.001	0.431	NS
MCW398	89	3.000	1.655	0.355	0.391	0.394	0.092	0.007	-0.006	0.349	NS
MCW400	67	4.000	3.114	0.595	0.678	0.690	0.122	0.017	-0.002	0.634	***
MCW401	73	3.000	1.409	0.246	0.290	0.290	0.152	0.001	-0.018	0.272	NS
MCW402	88	4.667	3.230	0.759	0.689	0.694	-0.101	0.008	-0.004	0.633	NS
MCW403	89	2.000	1.957	0.605	0.489	0.490	-0.238	0.002	-0.008	0.37	NS
MCW404	88	3.000	1.320	0.246	0.241	0.242	-0.019	0.003	-0.010	0.22	NS
MCW405	88	6.333	3.222	0.742	0.689	0.691	-0.077	0.003	-0.008	0.646	NS
MCW408	86	2.000	1.801	0.417	0.445	0.445	0.063	0.001	-0.013	0.347	NS
MCW409	87	6.333	4.421	0.835	0.774	0.777	-0.079	0.005	-0.007	0.745	NS
MCW410	68	2.000	1.986	0.458	0.496	0.498	0.078	0.004	-0.013	0.374	NS
MCW411	77	2.667	1.803	0.476	0.442	0.447	-0.075	0.011	-0.003	0.352	NS
ADL0266	79	4.000	3.063	0.712	0.673	0.677	-0.058	0.007	-0.007	0.628	*
LEI0122	77	3.000	2.487	0.644	0.598	0.609	-0.078	0.019	0.006	0.532	NS
MCW0085	86	3.000	2.108	0.578	0.524	0.526	-0.104	0.004	-0.008	0.444	NS
UMA0038	79	7.000	6.017	0.848	0.833	0.838	-0.017	0.006	-0.008	0.816	*
ADL0246	88	3.000	1.840	0.388	0.455	0.458	0.147	0.006	-0.008	0.379	NS
LEI0094	86	3.000	1.578	0.436	0.359	0.363	-0.213	0.011	0.001	0.305	NS
MCW0284	80	2.000	1.798	0.473	0.443	0.446	-0.068	0.006	-0.007	0.345	NS

 Table (2): Genetic characterizations for the studied 25 microsatellite markers

N= number of sampled individuals, Mean Na = Mean number of different alleles over generations, Mean Ne = Mean number of effective alleles over generations, Mean Ne = Mean number of effective alleles over generations. Mean Ho = Mean observed heterozygosity over k generations, Mean He = Mean expected heterozygosity over k generations, H_t = Total expected heterozygosity, F_{IS} : heterozygosis deficit, F_{st} = Inbreeding coefficient within generations, relative to total = genetic differentiation among generations. G_{ST} = Genetic differentiation coefficient, PIC= The polymorphic information content, and HWE = Hardy-Weinberg equilibrium.

Poultry, QTL, Microsatellite markers, Crossing, Growth, GGA4

Table(3): Analysis of molecular variance (AMOVA) in studied generations.								
				Est.		F-		
Source	df	SS	MS	Var.	%	Statistics	Р	
Among generations	2	11.038	5.519	0.000	0%	-0.007	0.991	
Among Individuals	86	705.844	8.207	1.014	14%	0.141	0.001	
Within Individuals	89	550.000	6.180	6.180	86%	0.135	0.001	
Total	177	1266.882		7.194	100%			

df: degrees of freedom, SS: sum of squares, MS: mean square, Est. Var: Estimated variance. Table (4): Summary of genomic region with QTL for body weight of the chicken.

GGA	Position	Age	Cross ¹	G ²	References
1	137-152	12 wks.	BL x WL	F ₂	Podisi et al., 2013
	402	9 wks.	SS x WR	F ₂	Uemoto et al., 2009
	598	4-5 wks.	BS x LD	F ₂	<i>Liu et al., 2008</i>
	590	6-12 wks.			
	553	4 wks.	BS x LD	F ₂	<i>Liu et al., 2007</i>
	195-555	5 wks.			
	548	6 wks.			
	551	7 wks.			
	351	8 wks.			
	528	9 wks.			
	394	7 wks.	BS x BD	BC1- F2	Atzmon et al., 2006
		5 wks.	BS x LD	F ₂	Nones et al., 2006
		6 wks.			
		8 wks.			
	80-100	35 d	TT x CC	F ₂	Nones et al., 2005
	184-200	35 d			
	125-139	42 d			
	72-122	8, 46, 112, 200 d	RJ x WL	F ₂	Carlborg et al., 2003;
					Kerje et al., 2003
	70	8 wks.	BS x F &WL	F ₁	Deeb and Lamont 2003
	550	10 wks.			
	534	11,12 wks.			
	151-169	3 wks.	WL x CB	F ₂	Sewalem et al., 2002
	169-205	6 wks.			
	426-527	9 wks.			
	240	7 wks.	BD x BD	F ₂	Van Kaam et al., 1998
	240	7 wks.	BD x BD	F ₃	Van Kaam et al., 1999
	179-205	5 wks.	WPR x WPR		Jennen et al., 2005
	386	1 d	RJ x WL	F ₂	Carlborg et al., 2003
2	60-119	13 wks.	S x WPR	F ₂	Tatsuda & Fujinaka 2001
	2-60	16 wks.			
	292-302	6, 9 wks.	WL x CB	F ₂	Sewalem et al., 2002
	384-452	200 d	RJ x WL	F ₂	Carlborg et al., 2003 ;
					Kerje et al., 2003
3	40-216	48 wks.	BL x WL	F ₂	Podisi et al., 2013
	220	9 wks.	SS x WR	F ₂	Uemoto et al., 2009
	102	35, 41d	BS x WL	F ₂	<i>Ruy et al., 2007</i>

Continue table (4):								
GGA	Position	Age	Cross ¹	G ²	References			
4	384-452	8 wks.	BS x WL	F ₂	Zhou et al., 2006			
	0-161	6 wks.						
	0-177	12 wks.	BL x WL	F_2	Podisi et al., 2013			
	37			F ₃	De Koning et al., 2003			
	23	8 wks.	KNC x KNC	F_1	Cahyadi et al., 2016			
	37	4 wks.						
	200-220	35, 55 d	BSD x WL	F_2	Schreiweis et al., 2005			
	112-120	3 wks.	WPR x WPR	F9	Rabie et al., 2004			
	130-140	5 wks.						
	142-170	10, 15, 20 wks.	NHI x WL77	F_2	Nassar et al., 2015			
	194-216	40 wks.	RIR x WL	F_2	Tuiskula-Haavisto et al., 2002			
	120	7 wks.	BD x BD	F_2	Van Kaam et al., 1998			
8	24	5 wks.	WPR x WPR	F ₈	Pakdel et al., 2004			
	25-94	3, 6, 9 wks.	WL x CB	F_2	Sewalem et al., 2002			
	46	8 d	RJ x WL	F_2	Kerje et al., 2003			
	91	3 wks.	WPR x WPR	F9	Rabie et al., 2005			
10	34	2 wks.	WPR x WPR	F ₈	Pakdel et al., 2004			
	88	3 wks.	WPR x WPR	F ₈	Rabie et al., 2005			
20	6	46, 112 d	RJ x WL	F ₂	Carlborg et al., 2003			
Ζ	118-165	3 wks.	WL x CB	F ₂	Sewalem et al., 2002			

Tarik Rabie^{1*}, Ahmed Soliman²

¹RIR=Rhode Island Red layer; RJ=Red Junglefowl. CB=commercial broiler; KNC= Korean native chicken; h-/l-AFC=high/low abdominal fat content; S=Satsumadori; WL=White Leghorn layer; WPR=White Plymouth Rock broiler; NHI= inbred New Hampshire; WL77= White Leghorn 77; BS = broiler breeder sire line. ²G=Generation.

Figure (1): The observed allelic size and frequency per locus in each generation. The allele size with asterisk is a private allele for each generation. M- is MCW locus, L- is LEI locus, A- is ADL locus, and U is UMA locus. G_0 , G_1 , and G_2 are the successive generations.

Figure (2): The test statistic values from the QTL analysis on chromosome 4. 10% chromosomewise significance thresholds are included. The association between the phenotypic traits and each microsatellite marker are integrated. While the trait associated with the specific marker has a significant effect with the sex (Male \circ , \circ and Female \Box , \blacksquare at P \leq 0.05, and 0.01, respectively), related to generation 1 (G1) \Leftrightarrow , \bigstar , and G2 \bigstar , \bigstar at P \leq 0.05, and 0.01, respectively), Finally the \bigstar referred to the significant effect at P \leq 0.001.DG=ADG

Figure (3): Allelic patterns across generations (G_1 , G_2 , and G_3). Where Na = Number of different alleles, Ne = Number of effective alleles, I = Shannon's Information Index, He = Expected heterozygosity.

REFERENCES

- Agapow, P.M. and A. Burt, 2001. Indices of multilocus linkage disequilibrium, Molecular Ecology Notes, 1, pp101-102.
- Atzmon,G., Y. I. Ronin, A. Korol, N. Yonash, H. Cheng and J. Hillel, 2006. QTLs associated with growth traits and abdominal fat weight and their interactions with gender and hatch in commercial meat-type chickens. Animal Genetics, 37, 352–358.
- **Balloux,F. and N. Lugon-Moulin,2002**. The estimation of population differentiation with microsatellite markers. Mol. Ecol. 11, 155-165.
- **Brody, S., 1945.** Bioenergetics and Growth. 1st ed. Reinhold Publishing, New York.
- Brown, W.R., SJ. Hubbard, C .Tickle and SA. Wilson, 2003. The chicken as a model for large scale analysis of vertebrate gene function. Nat. Rev. Genet. 4, 87-98.
- Cahyadi, M., Hee-Bok, a. Park, , S .Dong-Won, J .Shil, C .Nuri, H .Kang-Nyeong, K .Bo-Seok, J .Cheorun, and L. Jun-Heon,2016.
 Variance Component Quantitative Trait Locus Analysis for Body Weight Traits in Purebred Korean Native Chicken. Asian Australas. J. Anim. Sci. 29: 43-50.

- Carlborg, O., S.Kerje, K.Schutz, L.Jacobsson, P.Jensen and L.Andersson, 2003. A global search reveals epistatic interaction between QTL for early growth in the chicken. Genome Research 13, 413–21.
- **Cheng, H.H. and L.B. Crittenden,1994.** Microsatellite markers for genetic mapping in the chicken. Poult. Sci., 73: 539-546.
- Churchill, G. A., and R. W. Doerge,1994. Empirical threshold values for quantitative trait mapping. Genetics 138: 963-971.
- Core,T .R., 2013.R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. http://www.Rproject.org/
- Crooijmans, R.P.M.A., A.J.A. Van Kampen, J.J. Van der Poel and M.A.M.Groenen,1993. Highly polymorphic microsatellite markers in poultry, Anim. Genet. 24 : 441- 443.
- Crooijmans, R.P.M.A., P.A.M. Van Oers, J.A. Strijk, J.J. Van der Poel and M.A.M. Groenen, 1996. Preliminary linkage map of the chicken (Gallus domesticus) genome based on microsatellite markers: 77 new markers mapped, Poult. Sci. 75: 746 - 754.
- De Koning, DJ., D .Windsor, PM .Hocking, DW .Burt, A .Law, CS

.Haley, A .Morris, J .Vincent and H .Griffin ,2003. Quantitative trait locus detection in commercial broiler lines using candidate regions. J. Anim. Sci. 81, 1158-1165.

- **Deeb, N., and S. J. Lamont, 2002.** Genetic architecture of growth and body composition in unique chicken populations. J. Hered.93:107–118.
- **Deeb, N., and S. J. Lamont, 2003.** Use of a novel outbred by inbred F1 cross to detect genetic markers for growth. Anim. Genet. 34:205–212.
- El-Sayed, M.A., Kh.Roushdy, A.Galal, and A.H.El-Attar,2011. Genetic differentiation of two Egyptian chicken breeds using 15 microsatellite markers. Proc. 3rd International Conference of Genetic Engineering and its Applications, Sharm El-Sheikh, Egypt. pp. 149-161.
- El-Tanany, M., U.Philipp, S. Weigend and O.Distl, 2011. Genetic diversity of ten Egyptian chicken strains using 29 microsatellite markers. Anim. Genet. 42, 666-669.
- Groenen, M.A.M., H.H. Cheng, N. Bumstead, B. Benkel, E. Briles, D.W. Burt, T. Burke, L.B. Crittenden, J. Dodgson, J. Hillel, S.J. Lamont, A. Ponce de leon, M. Soller, H. Takahashi and A. Vignal, 2000. A consensus linkage map of the chicken genome. Genome Res. 10, 137-147.
- Gu, X., C.Feng, , L.Ma, C.Song, Y.Wang ,Y.Da and N.Li, 2011. Genome-wide association study of body weight in chicken F2 resource population. *PloS one*, 6(7), [e21872].
- Haldane, J. B. S., 1919. The combination of linkage values and the calculation of distances between the loci of linked factors. Journal of Genetics 2: 3-19. Google Scholar
- Hillel, J.M., A.M. Geroenen, M. Tixierbiochard, A.B. Korol, L. David,
 V.M. Kirzhner, T. Burke, A. Barredirie, R.P.M.A. Crooijmans, K. Elo,
 M.W. Feldman, P.J. Freidlin, , A.

Maki-tanila, M. Dortwijn, P. Thomson, A. Vignal, K. Wimmers and S. Weigend, 2003. Biodiversity of 52 chicken population assessed by microstalitte typing of DNA Pools. Genet. Sel. Evol., 35:533-557.

- Hinsby, A. M., J. V. Olsen, and M. Mann, 2004. Tyrosine phosphoproteomics of fibroblast growth factor signaling: A role for insulin receptor substrate-4. J. Biol. Chem. 279:4643846447.
- Holsinger, K.E. and B.S. Weir, 2009. Genetics in geographically structured populations: defining, estimating and interpreting FST. *Nat Rev Genet.*, *10: 639–650*.
- Jennen, D.G.J., A.L.J. Vereijken, H. Bovenhuis, R.P.M.A. Crooijmans, A. Veenendaal, J.J. van der Poel and M.A.M. Groenen,2005. Confirmation of quantitative trait loci affecting fatness in chicken using advanced intercross lines. Genetic, Selection, Evolution, 37: 215-228.
- Kalinowski, S.T., M.L.Taper and T.C.Marshall,2007. Revising how the computer program **CERVUS** accommodates genotyping error success paternity increases in assignment. Mol. Ecol., 16: 1099-1106.
- Kerje,S., O.Carlborg, L.Jacobsson, K. Schtitz, C.Hartmann, P.Jensen and L.Andersson, 2003. The twofold difference in adult size between the red jungle fowl and white leghorn chickens is largely explained by a limited number of QTLs.A nim. Genet. 34, 264-274
- Khalil, M.H.1, M.M.Iraqi, El-Moghazy, M.Gihan and M.H.Abdel Alal, 2016. QTL and chromosomal mapping for growth and egg performance in chickens: Applications and emphasis of results in Egypt. 3rd International Conference on Biotechnology Applications in Agriculture (ICBAA), Benha University, Moshtohor and Sharm El-Sheikh, 5-9. Egypt. Pp 25-38.

- Knott, S. A., J. M. Elsen, and C. S. Haley, 1996. Methods for multiplemarker mapping of quantitative trait loci in half-sib populations. Theoretical and Applied Genetics 93: 71-80.
- Liu X, Li H., S .Wang, X .Hu, Y .Gao, Q .Wang, N .Li, Y .Wang and H .Zhang, 2007. Mapping quantitative trait loci affecting body weight and abdominal fat weight on chicken chromosome one. Poult. Sci. 86: 1084-1089.
- Liu, X., H.Zhang, H.Li, N. Y.Li, Zhang, Q. Zhang, S.Wang, Q.Wang and H.Wang, 2008. Fine-mapping quantitative trait loci for body weight and abdominal fat traits: effects of marker density and sample size. Poult. Sci. 87: 1314–1319.
- Liu R., Y.Sun, G.Zhao, F.Wang, D.Wu, M.Zheng, J.Chen, L.Zhang, Y.Hu and J.Wen, 2013. Genome-wide association study identifies loci and candidate genes for body composition and meat quality traits in Beijing-You chickens. PLoS One 8, e61172.
- Lyu, S., D. Arends, M. K. Nassar and G. A. Brockmann, 2017. Fine mapping of a distal chromosome 4 QTL affecting growth and muscle mass in a chicken advanced intercross line. Animal Genetics, 48, 295–302.
- Ma H., W.Jiang, P.Liu, N.Feng, Q.Ma, C.Ma and *et al.* 2014. Identification of transcriptome-derived microsatellite markers and their association with the growth performance of the mud crab (Scylla paramamosain). *PLoS ONE* 9:e89134.
- Nassar, M.K.,Z.S.Goraga and G.A.Brockmann,2015. Quantitative trait loci segregating in crosses between New Hampshire and White Leghorn chicken lines: IV. Growth performance. Animal genetics, 2015, 46(4):441-6.
- Nones, K., M.C.Ledur, D.C.Ruy, E.E.Baron, A.S.A.M.T. Moura and L.L Coutinho, 2005. Genetic linkage map of chicken chromosome 1 from a Brazilian resource population. *Scientia Agricola* 62, 12–7.

- Nones, K., MC.Ledur, DC .Ruy, EE .Baron, CMR .Melo, As .Moura, EL.Zanella, DW .Burt and LL. Coutinho, 2006. Mapping QTLs on chicken chromosome 1 for performance and carcass traits in a broiler × layer cross. Anim. Gene. 37: 95-100.
- Pakdel, A., 2004. Genetic analysis of ascites-related traits in broilers. PhD Thesis, Wageningen University, The Netherlands.
- Podisi, BK., SA. Knott, DW .Burt and PM .Hocking ,2013. Comparative analysis of quantitative trait loci for body weight, growth rate and growth curve parameters from 3 to 72 weeks of age in female chickens of a broiler– layer cross. BMC Genet. 2013; 14:22.
- Rabie, T. S., R. P. Crooijmans, H. Bovenhuis, A. L. Vereijken, T. Veenendaal, J. J. van der Poel, J. A. Van Arendonk, A. Pakdel, and M.A.Groenen,2005.Genetic mapping of quantitative trait loci affecting susceptibility in chicken to develop pulmonary hypertension syndrome. Anim. Genet. 36:468–476.
- **Rabie, T.K.S.M., 2004.** Pulmonary hypertension syndrome in chicken: Peeking under QTL peaks. Chapter 4, Validation and fine-scale mapping of quantitative trait loci affecting pulmonary hypertension syn-drome (PHS) in broilers using advanced intercross line. Thesis, pp 65–83 (2004).
- Rosenberg,N.A.,T.Burke,M.W.Feldman ,P.J.Freidlin,A.M.Groenen,J.Hillel,A. Mäki-Tanila,M.Tixier-Boichard,A.Vignal,K.Wimmers and S.Weigend, 2001. Empirical evaluation of genetic clustering methods using multilocus genotypes from twenty chicken breeds, Genetics 159 (2001) 699_713.
- Rothschild, M.F., and M. Soller,1997. Candidate gene analysis to detect genes controlling traits of economic

importance in domestic livestock. Probe 8: 13–20.

- Roushdy, Kh. ,M.A.EI-Sayed,A.Galal and A.EI-Attar,2012a. Determining some genetic loci of productive traits in tow local breeds using microsatellite markers. Proc. 3rd Mediterranean Poultry Summit and 6th International Poultry Conference, Alexandria, Egypt. pp. 1227-1240.
- Roushdy, Kh., T.M.A. Tantawi and Comparative A.A.Bakir,2012b. chicken genome analysis of Egyptian local breeds and developed strains: 1microsatellite discrimination The between Dandrawi and Sinai breeds. Mediterranean Proc. 3rd Poultry Summit and 6th International Poultry Conference, Alexandria, Egypt. pp. 1617-1628.
- Ruy, DC., A.S.A.M.T. Moura, K. Nones, EE .Baron, MC. Ledur, RLR. Campos, M .Ambo, CMR .Melo andLL .Coutinho, 2007. Detection of QTL for performance, fatness and carcass traits on chicken chromosomes 3 and 5. In:XI QTL MAS Workshop (Ed. By A. Legaua). 260_29. XI QTL MAS Workshop, Toulouse.
- Sadagurski, M., X. C. Dong, M. G. Myers Jr., and M. F. White, 2014. IRS2 and IRS4 synergize in non-LepRb neurons to control energy balance and glucose homeostasis. Mol. Metab. 3:55-63.
- Sandercock, DA., GR .Nute and PM .Hocking, 2009. Quantifying the effects of genetic selection and genetic variation for body size, carcass composition, and meat quality in the domestic fowl (*Gallus domesticus*). Poult. Sci. 88: 923-931.
- Sazanov, A., A .Sazanova, O .Barkova and K .Jaszczak, 2010. QTL in chicken: a look back and forward-a review. Anim. Sci. Pap. Rep. 28: 307-314.
- Schreiweis, M.A., P.Y.Hester, and D. E. Moody, 2005. Identification of

quantitative trait loci associated with bone traits and body weight in an F2 resource population of chickens. Genet. Sel. Evol. 37:677–698.

- Sewalem, A., DM .Morrice, A. Law, D.
 Windsor, C. S. Haley, C. O. N. Ikeobi,
 D. W. Burt, and P. M. Hocking, 2002.
 Mapping of quantitative trait loci for body weight at three, six and nine weeks of age in a broiler layer cross.
 Poult. Sci. 81: 1775–1781.
- Soltan, M., S. Farrag, A. Enab, E. Abou-Elewa, S. El-Safty and A. Abushady, 2018. Sinai and Norfa chicken diversity revealed by microsatellite markers. South African Journal of Animal Science. 48; 307-315.
- Tatsuda, K., K. Fujinaka, 2001. Genetic mapping of the qtl affecting body weight in chickens using af -2 family. Brit. PoultryS ci.4 2,3 33-337.
- Tsuiskula-Haavisto, M., M. Honkatukia, J.Vilkki, D. J.de Koning, N. F. Schulman, and A.MakiTanila, ,2002. Mapping of quantitative trait loci affecting quality and production trait in egg layers. Poult. Sci. 81: 919–27.
- Uemoto ,Y., S .Sato, S .Odawara, H .Nokata, Y .Oyamada, Y .Taguchi, S .Yanai, O .Sasaki, H. Takahashi , K .Nirasawa and E .Kobayashi , 2009. Genetic mapping of quantitative trait loci affecting growth and carcass traits in F₂ intercross chickens. Poult. Sci. 88: 477-482.
- VanKaam, J., M. Groenen, H. Bovenhuis, A .Veenendaal, L. Vereijken, and J.van Arendonk, 1999. Whole genome scan in chickens for quantitative trait loci affecting growth and feed efficiency. PoultryS ci. 78, 15-23.
- VanKaam,J.,J.vanArendonk,M.Groenen,H.Bovenhuis,A.Vereijken, R .Crooijmans, JJ .vander Poel and A. Veenendaal, 1998.Whole genome scan for quantitativetrait loci affecting body weight inchickens using a three-generation

design. Lives. Prod. Sci. 54, 133-150.

- Vanhala,T.,M.Tuiskula-Haavisto, K. Elo, J.Vilkki and A.S.O. Maki-Tanila, 1998. Evaluation of genetic variability and genetic distances between eight chicken lines using microsatellite markers, Poult. Sci. 77: 783-790.
- Voorrips, R.E., 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. The Journal of Heredity 93 (1): 77-78.
- Wang, S. Z., X. X. Hu, Z. P. Wang, X. C. Li, Q. G. Wang, Y. X. Wang, Z. Q. Tang, and H. Li, 2012. Quantitative trait loci associated with body weight and abdominal fat traits on chicken chromosomes 3, 5 and 7. Genet. Mol. Res. 11 (2): 956 965.
- Zhang, H., S. Wang, H. Li, X. Yu, N. Li, Q. Zhang, X. Liu, Q. Wang, X. Hu, Y. Wang and Z. Tang, 2008. Microsatellite markers linked to quantitative trait loci affecting fatness in divergently selected chicken lines for abdominal fat. Asian-Austral. J. Anim. Sci. 21: 1389-1394.

- Zhou, H. and S.J. Lamont, 1999. Microsatellite markers to estimate genetic differences among Pedigreedefined inbred chicken lines of commercial and exotic origin. Proceedings of the From Jay Lush to Genomics Visions for Animal Breeding and Genetics, May 16-18, Iowa, USA., pp: 175
- Zhou, H., N.Deeb, C.M.Evock-Clover, C.M . Ashwell and S.J. Lamont, 2006. Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic traits in the chicken. I. Growth and average daily gain. Poultry Science 85, 1700–11.

الملخص العربى

تكامل مواقع الصفات الكمية ودراسة الارتباط لصفات النمو الواقع على الكرمو المرابع للدجاج

طارق السعيد ربيع1 ، احمد سليمان احمد2

^اقسم الانتاج الحيواني - كلية الزراعة – جامعة قناة السويس ²قسم انتاج الدواجن – كلية الزراعة -الشاطبي – جامعة الاسكندرية

تم استخدام عدد 25 من الواسمات الور اثية (مايكر وستلايت) و التي تنتمي إلى الكر وموسوم الرابع للدجاج (GGA4) ، وتم استخدام نهج تعيين معدل فاصل الانحدار لتحديد مواقع الصفات الكمية و كشفت النتائج أن جميع الواسمات المختارة كانت ذات معلوماتية مفيدة. كان هناك دليل إحصائي على وجود الـ QTL على GGA4 لـ BW عند عمر 8 و 12 أسبوعًا ، وتجاوز منحني الـQTL لصفة الـ BW عند عمر 8 أسابيع الحد الإحصائي. الصفات ذات الصلة مثل معدل النمو ، وصلت إلى العتبة الإحصائية التي توحي بوجود تأثير. جميع تأثيرات الـ QTL الثلاثة المتحصل عليها على GGA4 كان لها تأثير إحصائي معنوي و تقع بين 134-cM154 . بالإضافة إلى ذلك ، ارتبطت معظم الواسمات (MCW410 ،MCW0409،MCW0397،MCW0393،MCW0390 و UMA0038) بصفات النمو في جميع أعمار الدجاج. على الرغم من أن محتوى معلومات تعدد الأشكال (PIC) الذي تم الحصول عليه عبر جميع الواسمات (مايكروستلايت) كان 46٪ ، وكانت النسبة حوالي 82٪ بالنسبة لـ UMA0038 . تم العثور على أليلين خاصين للواسمات MCW0405 و MCW0409 مع تردد أليل حوالي 0.025 في G1 و G2 على التوالي. بالإضافة إلى ذلك ، تم استخدام اختبار Chi-square للتحقيق في انحراف كل موقع عن توازن هاردي فاينبرج بشكل فردي ، ولم تكن أربعة واسمات (ADL0266 ، MCW0395 ، MCW0400 و UMA0038) في حالة توازن وراثي. بالإضافة إلى ذلك ، كشف تحليل التباين الجزيئي (AMOVA) أن 14 ٪ و 86 ٪ من التّباين لوحظت بين وداخل الأفراد ، على التوالي. قد تعكس القيمة الصّغيرة التي تم الحصول عليها للـ FST (تراوحت بين 0.001 إلى 0.019) التمايز الوراثي الكبير جدا. و نستخلص من هذه الدراسة أن الـ QTL المتحصل عليها ، والمتكاملة مع در اسة الارتباط ، قد قدمت معلومات مفيدة وعملية لتمييز العوامل الور اثية الجزيئية التي تؤثر على صفاات النمو داخل عشائر الدجاج المحلى.