ABSTRACT: This study aimed to evaluate the effect of *Spirulina platensis* on sexual desire, semen quality, and biochemical and antioxidant parameters in blood and seminal plasma of APRI rabbit bucks. Thirty bucks were divided into three groups (10 in each). Bucks in the 1st, 2nd and 3rd groups daily received drinking water supplemented with 0, 150, 300 mg spirulina/l for one month (treatment period), respectively. About one month of treatment, semen was collected and evaluated twice/week for ten weeks (200 ejaculates/group). At the end of the experiment, biochemical constituents, enzymatic activity and antioxidants status in blood and seminal plasma, as well as blood plasma testosterone were analyzed. Also, does (n=20/group) were naturally mated with five bucks from each group. Net semen volume, pH value, individual motility, livability, membrane integrity and concentration of spermatozoa, total sperm output per ejaculate and semen initial fructose increased (P<0.05), while reaction time, abnormality and acrosomal damage decreased (P<0.05) by both spirulina levels compared with control group. In blood and seminal plasma, total proteins, globulin, glutathione, glutathione peroxidase, glutathione S-transferase and superoxide dismutase increased (P<0.05), while aspartate aminotransferase and thiobarbituric acid-reactive substances (P<0.05) decreased by both spirulina levels. Testosterone and albumin in blood plasma increased (P<0.05) by both spirulina levels. Pregnancy rate and litter size improved (P<0.05) in does mated by bucks treated with both spirulina levels. *Spirulina platensis* administration at a level of 150 mg/l in drinking water for one month, could be effectively used for improving semen quality, oxidative status and the fertility of rabbit bucks.

Keywords: Spirulina, rabbit bucks, semen quality, antioxidants, fertility
INTRODUCTION

Buck reproductive efficiency is of economic importance, and using semen with high characteristics helps to avoid the valuable genotypes losses (Vizzarri et al., 2019). Under oxidative stress, reactive oxygen species (ROS) generation rise the normal physiological process in animal tissue and organs including the testes. Rabbit spermatozoa display high metabolic activity and rich in polyunsaturated fatty acids (Castellini et al., 2006), leading to increasing lipid peroxidation (Attia et al., 2017) and thus they are sensitive to ROS attacks. Increasing lipid peroxidation results in reducing motility (Opuwari and Henkel, 2016), fragmentation of DNA and reducing sperm fertilizing ability (Attia et al., 2019). Also, an excessive ROS production exceed the antioxidant capacity of the seminal plasma, leading to damaged mitochondria and membranes (acrosomal and plasma) of spermatozoa (Mizeraa et al., 2019).

New alternative approaches to improve buck fertility kept under unfavorable reproductive seasons are demanded (Okab et al., 2013). Practically, safe and economical application of several natural antioxidants resources could be useful to reduce negative impacts of oxidative stress on semen quality, thus improving reproductive efficiency of rabbit bucks (El-Desoky et al., 2017).

An interest in spirulina alga as one of microalgae focused mainly on its rich contents of vitality important compounds, such as protein with all essential amino acids (60-70% by dry weight), vitamins (B12 and β-carotene) and provitamin A (-carotenes), polyunsaturated fatty acids, minerals and phytopigments (Farag et al., 2016). Spirulina alga posses impact as antioxidant, anti-inflammatory, antiviral, immune-modulatory, antitumor and probiotics properties (Farag et al., 2016).

In comparing with other synthetic products, animal reproduction was improved by spirulina treatment with low cost and good health status (Shanmugapriya et al., 2015).

In rabbits, impact of spirulina on reproductive efficiency of does was reported by (El-Ratel, 2017). Recently, spirulina oral administration, at a level of 750 mg/buck for 5 weeks as a treatment period pre-semen collection, has importance as a treatment strategy for improving the buck reproductive performance (Fouda and Ismail, 2017). It is well known that the positive effects of spirulina are in dose depended manner and differ with treatment method, dietary, drinking water or oral administration (Bashandy et al., 2016; El-Ratel, 2017).

Therefore, the present study was designed to evaluate the antioxidant action of *Spirulina platensis* (SP) at different levels (0, 150 and 300 mg/l) in drinking water for one month pre-semen collection on reproductive performance, and biochemical properties and oxidative stress in blood and seminal plasma of rabbit bucks.

MATERIALS AND METHODS

This study was conducted at a private commercial rabbit farm, Mansoura City, Dakahlia Governorate, Egypt. The laboratorial work was carried out at Physiology and Biotechnology Laboratory, Animal Production Department, Faculty of Agriculture, Mansoura University, Egypt.

Spirulina platensis samples
Spirulina, rabbit bucks, semen quality, antioxidants, fertility

The SP in powder form was obtained from Alga Biotechnology Unit, National Research Center, Dokki, Egypt. Nutritional analysis and active composition of SP (amino acid and fatty acid profiles, and mineral and pigments composition) is summarized in Table 1. All analyses were performed at the Regional Centre for Food and Feed (RCFF), belonging to Agricultural Research Center, Ministry of Agriculture, Giza, Egypt. All analyses were expressed on the basis of 100 g edible portion of SP. The nutritional analysis of SP samples was determined according to AOAC (2006), while active composition was determined according to AOAC (2000). Amino acid profile, vitamins and pigments were accomplished by using high performance liquid chromatography (HPLC), while fatty acid profile was analyzed using Gas–Chromatographic model GC-17A.

Animals and experimental design
Thirty healthy and adult APRI rabbit bucks with an average live body weight (LBW) of 3.05±0.22 kg were housed individually in stainless steel cages batteries (40 × 50 × 35 cm) accommodated with feeders for pelleted rations and automatic fresh-water drinkers in a naturally ventilated and lighted rabbitry. The experimental bucks were fed ad libitum on a commercial pellet diet (17% crude protein, 14% crude fiber and 2850 Kcal digestible energy/kg), covering their daily nutritional requirements according to NRC (1977). Rabbit bucks were divided into 3 experimental groups (10 bucks in each) according to LBW. Bucks in the 1st group received drinking water without any supplementation (control group, G1), while those in the 2nd (G2) and 3rd (G3) groups were daily received drinking water supplemented with 150 or 300 mg SP/l, respectively, for 31 days (1 October to 31 October 2018) as a treatment period.

Live body weight and water consumption
Daily water consumption (ml/buck/day) and LBW (g/buck) were recorded as initial and final weight during the treatment period (1 October to 31 October 2018).

Semen collection and evaluation
Total of 10 bucks in each group were used as semen donors and semen was collected twice/week for 10 weeks (1 November 2018 to 8 January 2019) as a collection period of semen (200 ejaculates) in the morning by using an artificial vagina and a teaser doe. The reaction time as the time elapsed from introducing buck to teaser up to complete ejaculation was recorded. It was measured in seconds using a stopwatch. All collected ejaculates were individually transferred after collection in graduated test tubes in a water bath (37°C) to the Laboratory. Ejaculate semen volume without gel and pH values (pen pH meter) was determined, semen characteristics were evaluated thereafter. Percentage of individual motility was determined in five microscopic fields for each semen sample using the aid of a microscope (Nikon E 200, China) at magnification of ×40 and assessed from 0 to 100%. Aliquots of raw semen (5 μl) were fixed using a vital eosin-nigrosin stain to allow later measurements of semen quality traits by examining 200 spermatozoa under microscope (Avishkar AVI-504 Advance...
I.T. El-Ratell* and A. A. Gabr

Research Binocular Microscope, Avishkar International, India), then live sperm (unstained sperm cells) and morphological abnormality (head, mid piece or tail defects) percentages were calculated. Sperm cell concentration ($\times 10^6$/ml) was determined after semen dilution (1: 99) by using the improved Neubauer hemocytometer slide (GmbH +Co., Brandstwiete 4, 2000 Hamburg 11, Germany).

Semen sample (10 μl) was gently mixed with 2 ml sucrose solution (osmolarity of 50 mOsm/kg) in a water bath (37 °C) for 30 minutes to assess hypo-osmotic swelling test (HOS-t). Spermatozoa with curled tails (membrane integrity) were considered responded to HOS-t. After incubation, 20 μl of the mixture was placed on a microscope slide and covered with a glass cover. In five sperm fields (100 sperm cells in each), number of spermatozoa with curled tails was counted at 1000×magnification, then membrane integrity was expressed as percentage of spermatozoa with curled tails (El-Seadawy et al., 2017).

Acrosome integrity was determined by Giemsa stain according to Watson (1975). In briefly, fresh semen was extended (1:5) with warm normal saline, then smeared on glass slides, air-dried, fixed (10% neutral formal saline for 15 min), washed (running water for 20 min), stained with Giemsa solution overnight. The stained smear was rinsed in two changes of distilled water and air-dried. For acrosome integrity percentage, 100-sperm cells/sample were examined at 1000× in each field. Total sperm output (TSO) was calculated (El-Ratel, 2017b) as the following:

$$\text{TSO} = \frac{\text{Ejaculate volume (ml)} \times \text{sperm cell concentration/ml}}{10^6}$$

Testicular and epididymal characteristics

At the end of semen collection period, five bucks from each group were weighed and slaughtered, then testes and epididymis were immediately removed, trimmed of adhering connective tissue and fats. The separated testes and epididymis were dried and weighed to determine their relative weights. Also, testicular measurements (length, width and thickness) were recorded.

Semen and blood plasma constituents

In the last week of semen collection, blood samples were collected from ear vein of five bucks in each group into clean test tubes containing EDTA. Blood plasma as well as seminal plasma were separated by centrifugation at 3000 rpm for 20 min and stored at -20 °C , pending analysis. In blood and seminal plasma, total proteins (TP, g/dl) and albumin (Alb, g/dl) was determined using commercial kits purchased from Egyptian company for biotechnology (Obour City industrial area, Cairo, Egypt). Globulin (Glb, g/dl) concentration was calculated by subtracting Alb from TP. Activity of Aspartate (AST) and alanine (ALT) aminotransferase was determined using commercial kits (Diamond Diagnostics, Egypt) and spectrophotometer. In addition, total antioxidant capacity, glutathione content, glutathione peroxidase, glutathione S-transferase, superoxide dismutase and thiobarbituric acid-reactive substances were assayed using commercially available kits (Biodiagnostic Co., Recycling Crusher-SBM®) and spectrophotometer. After collection, concentration of initial semen
fructose was assayed immediately according to Mann (1948).

Blood testosterone
Testosterone concentration in blood plasma was determined by imunoassay commercial kits (Biosource-Europe S.A. 8, rue de L’Lndustrie.B-1400 Nivelles, Belgium).

Fertility trail
Total of 60 APRI nulliparous doe rabbits were naturally mated by randomly five treated bucks in each group. On day 10-12 post-mating, pregnancy diagnosis was performed abdominally to calculate pregnancy rate (Number of pregnant does/number of mated does x 100). Two days pre-expected date of parturition, doe cages were provided with nest boxes. After parturition, kindling rate (KR) was calculated as the following: KR = (Number of kindled does/number of pregnant does) x 100. Total litter size at birth and live litter size after 12 h of kindling were recorded, and then viability rate of bunnies at birth and weaning was calculated. Bunnies were left with their dams during the suckling period and weaned on day 28 of age. Average bunny and litter weights at birth and weaning were recorded.

Statistical analysis
Data were analyzed as a randomized design using the General Linear Model procedure of SAS (2000), according to the following statistical model

\[Y_{ij} = \mu + A_i + e_{ij} \]

Where: \(Y_{ij} \) = observed values, \(\mu \) = general mean, \(A_i \) = effect of treatment (0, 150 and 300 mg/l water) and \(e_{ij} \) = random error.

Before data analysis, all sperm characteristics percentages were subjected to logarithmic transformation (\(\log_{10} x + 1 \)) to normalize data distribution. Chi-Square test was used for analyzing the rates of pregnancy, kindling and viability. The group differences were set at \(P < 0.05 \) using Multiple Range Test (Duncan, 1955).

RESULTS

Body weight and water consumption
During treatment period, final and change in body weight of bucks increased (\(P < 0.05 \)) only in G3, while these results showed that there was non-significant difference between G1 and G2. While, SP administration in the treated groups (G2 and G3) did not affect significantly the WDC values compared to (G1) group (Table 2).

Testicular and epididymal characteristics, and sexual desire
Data in Table 3 indicated that there was non-significant difference between experimental groups (G2 and G3) and the control group (G1) in testicular characteristics. Rabbits received SP levels caused to increase significant in epididymal weight compared to control group. These increases were pronounced with the high levels of SP (G3) being, 31%. Reaction time decreased (\(P < 0.05 \)), while plasma testosterone increased (\(P < 0.05 \)) in G2 and G3.

Semen quality
Net semen volume, pH value, percentages of individual motility, livability and membrane integrity of spermatozoa, sperm cell concentration, total sperm output and initial fructose concentration in raw semen increased (\(P < 0.05 \)), while percentage of abnormality and acrosomal damage of spermatozoa decreased (\(P < 0.05 \)) in G2 and G3 (Table 4).
Blood and seminal plasma constitutes
In blood plasma, total proteins increased (P<0.05) as a result of increasing (P<0.05) Alb and G1b in G2 and G3, reflecting similar Alb/G1b ratio in all groups. Activity of AST (P<0.05) and ALT (P≥0.05) decreased in G2 and G3, respectively. In seminal plasma, TP increased (P<0.05) in G2 and G3, as a result of increasing G1b (P<0.05) and Alb (P≥0.05), reflecting marked reduction (P<0.05) of Alb/G1b ratio in G3 only. Activity of AST and ALT reduced (P<0.05) in G2 and G3 (Table 5).

The effect of SP treatment on TAC was not significant. However, GSH, GPx, SOD and GST levels increased (P<0.05), and TBARS decreased (P<0.05) in blood and seminal plasma of bucks in G2 and G3.

Fertility trail
Pregnancy rate, litter size at birth (total and live) and at weaning, viability rate at birth, bunny and litter weights at birth and at weaning of does mated with bucks were improved (P<0.05) in G2 and G3 as compared to G1. However, kindling rate and viability rate at weaning were not affected (P≥0.05) by SP treatment (Table 7).

DISCUSSION
To achieve the aim of this study, the obtained results indicated positive effects of SP administration on the growth of bucks only at the highest level. This may be due to high poly-nutrients value and active composition of SP, in term of high contents from crude protein (57.40%), vitamins, minerals, essential amino acids, carotenoids, chlorophyll, and essential polyunsaturated fatty acids (Table 1). The present contents in SP were supported by Nedeva et al. (2014) and Farag et al. (2016). Additionally, SP had antioxidant properties in similar pattern with the positive effect of dietary antioxidants, such as selenium, folic acid and their combinations on body weight of rabbit bucks (Kamel, 2012). Also, impact of dietary addition of SP was reported on doe rabbits (El-Ratel, 2017a). Regarding the effect of SP in the present study, both levels of SP indicated marked improvement in sexual desire parameters of bucks. Similar results were reported on bucks orally treated with SP (750 mg/buck/d) for five weeks pre-semen collection (Fouda and Ismail, 2017) or with red algae (Ali and Mervat, 2013). As expected, potential SP effects on semen characteristic, in terms of increasing net semen volume, and motility, viability, membrane integrity, concentration and total output/ejaculate of spermatozoa, initial fructose level in semen; decreasing sperm abnormality and acrosomal damage. These findings were supported in rabbit (Fouda and Ismail, 2017) and in rats (Bashandy et al., 2016). Enhancement in semen quality of bucks in treated groups in the present study explained to be due to antioxidant components (Table 1), which have the ability to prevent the cell damage through increasing of the enzymes of the sperm antioxidant defense system as mentioned by El-Tohamy et al. (2012) of SP. It is worthy noting that improving semen quality parameters in the present study were paralleled with increasing (P<0.05) the sexual desire, reflecting positive effects on production of buck semen. It is well known that, testosterone is required for spermatogenesis and maturation of sperm cells (Walker, 2009), resulting in marked reduction in abnormality and
Spirulina, rabbit bucks, semen quality, antioxidants, fertility

acrosomal damage. Increased pH value in semen of treated groups was associated with increasing sperm cell concentration and semen volume. However, increasing semen volume may be attributed to increasing testosterone of bucks in treatment groups, which increase accessory sex glands activity. Concentration of semen initial fructose was found to have a positive relationship with most sperm characteristics (Ayoub et al., 2000). This was proved in the present study when semen fructose concentration increased in treatment groups (Table 4). In addition, for measuring sperm membrane stability, activity of AST and ALT in the seminal plasma is good indicator of semen quality (Dogan et al., 2009). The observed reduction in AST and ALT activities in the seminal plasma was in strong relationship with improving semen quality. Moreover, the decreased AST and ALT activities was in relation with decreasing sperm damage and increasing sperm livability and sperm cell concentration (Al-Daraji et al., 2010). Similarly, Fouda and Ismail (2017) found increased TP concentration and decreased (P<0.05) AST and ALT activity in seminal plasma of rabbits treated with SP. Also, rabbit treated with red algae significantly reduced activity of AST and ALT in semen (Ali and Mervat, 2013). Improving sexual desire and consequently semen quality was in association with increasing (P<0.05) TP and their fraction as well as decreasing AST activity in blood plasma in G2 and G3, in term of increased protein metabolism and improvement of liver function. In this context, Bhattacharyya and Mehta (2012) mentioned that SP may have protective property against dysfunction of the liver. Also, pronounced impact of SP as a dietary supplementation was shown on protein metabolism and liver function of doe rabbits (El-Ratel, 2017a) and pigs (Nedeva et al., 2014). This improvement in protein metabolism was attributed to containing SP high crude protein, essential amino acids, vitamins, minerals, phospholipids and antioxidants (Farag et al., 2016). It is of interest to note marked relationship between level of TP, Alb and Glb in blood and seminal plasma. Both treatments increased level of TP and their fraction and decreased AST activity in blood and seminal plasma. Results of antioxidant status showed similar trend of change in blood and seminal plasma of each group, but their levels were almost higher in blood plasma than in seminal plasma. These results indicated marked increase in the antioxidant enzyme activity and reducing lipid peroxidation for bucks as affected by SP. In accordance with the present results, SP treatment had improved oxidative capacity in blood of doe rabbits (El-Ratel, 2017a) and fattening lambs (El-Sabagh et al., 2014) as compared to the control. Also, SP administration significantly improved antioxidant status and decreased lipid peroxidation in seminal plasma of rabbit bucks (Fouda and Ismail, 2017) and mice (Hwang et al., 2011). The observed reduction in lipid peroxidation of bucks in G2 and G3 is parallel with improving in their semen quality. Reducing ROS generation from lipid peroxidation improves motility, integrity of plasma membrane and function of mitochondria in sperm cells (Attia et al., 2019). Animal spermatozoa have two systems of defense against the
I.T. El-Ratel and A. A. Gabr

ROS generation: 1) SOD for catalyzing the O$_2$ anion remove, and 2) GP$_X$ required for intracellular reduced GSH (Storey, 2008). Seminal plasma contains SOD, catalase and some reductases, as endogenous antioxidants, for inactivating generation of ROS, leading to protecting the spermatozoa (Faustini et al., 2004). Semen quality of bucks is the main factor for determining the reproductive efficiency of rabbit does (Attia et al., 2017). The obtained results indicated higher fertilizing ability of spermatozoa of bucks treated with SP as antioxidants. This improvement was associated with pronounced reduction in the oxidative stress for decreasing injury sperm damage, resulting in an enhancement in male fertility (Attia et al., 2015; Calogero et al., 2017). Similar results were reported by Fouda and Ismail (2017) on semen of bucks treated with SP.

CONCLUSION

Based on the foregoing results, spirulina treatment improved sexual desire, semen production, and antioxidant capacity of APRI rabbit bucks. This study recommended the importance of supplying drinking water of breeding rabbit bucks with *Spirulina platensis* (150 mg/l) for one month at least before mating of semen collection of artificial insemination.
Table (1): Nutritional analysis and active composition of *Spirulina platensis* powder

<table>
<thead>
<tr>
<th>Item</th>
<th>g/100 g</th>
<th>Item</th>
<th>g/100 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutritional analysis:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crud protein</td>
<td>57.40</td>
<td>Carbohydrate</td>
<td>23.52</td>
</tr>
<tr>
<td>Crud fat</td>
<td>1.50</td>
<td>Fiber</td>
<td>21.85</td>
</tr>
<tr>
<td>Amino acid profile:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>5.65</td>
<td>Tyrosine</td>
<td>3.62</td>
</tr>
<tr>
<td>Threonine</td>
<td>1.90</td>
<td>Phenylalanine</td>
<td>2.45</td>
</tr>
<tr>
<td>Serine</td>
<td>2.62</td>
<td>Histidine</td>
<td>0.98</td>
</tr>
<tr>
<td>Glycine</td>
<td>3.10</td>
<td>Lysine</td>
<td>2.78</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>7.34</td>
<td>Arginine</td>
<td>3.09</td>
</tr>
<tr>
<td>Alanine</td>
<td>2.40</td>
<td>Proline</td>
<td>2.35</td>
</tr>
<tr>
<td>Valine</td>
<td>4.25</td>
<td>Cystine</td>
<td>0.57</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>3.30</td>
<td>Methionine</td>
<td>1.20</td>
</tr>
<tr>
<td>Leucine</td>
<td>4.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamins composition:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin (A)</td>
<td>98.24 µg</td>
<td>Vitamin (B1)</td>
<td>3.74</td>
</tr>
<tr>
<td>Vitamin (B2)</td>
<td>5</td>
<td>Vitamin (B3)</td>
<td>11.20</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>6.12</td>
<td>Phantothenic acid</td>
<td>0.3</td>
</tr>
<tr>
<td>Fatty acid profile:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caprylic acid</td>
<td>1.52</td>
<td>Heptadecenoic acid ω-9</td>
<td>0.26</td>
</tr>
<tr>
<td>Capric acid</td>
<td>30.00</td>
<td>Hexa decatrienoic acid</td>
<td>0.35</td>
</tr>
<tr>
<td>Myristic acid</td>
<td>0.37</td>
<td>Vaccinic acid</td>
<td>4.20</td>
</tr>
<tr>
<td>Tetradecenoic acid</td>
<td>0.60</td>
<td>Linoleic acid</td>
<td>15.20</td>
</tr>
<tr>
<td>Pentadecenoic acid</td>
<td>0.30</td>
<td>Gamma-Linolenic acid</td>
<td>10.21</td>
</tr>
<tr>
<td>Palmitic acid</td>
<td>25.19</td>
<td>Eicosaenoic acid</td>
<td>0.27</td>
</tr>
<tr>
<td>Palmitoleic acid</td>
<td>0.82</td>
<td>C18:2 ω5</td>
<td>1.90</td>
</tr>
<tr>
<td>Stearic acid</td>
<td>1.82</td>
<td>Hexadecenoic ω7</td>
<td>2.63</td>
</tr>
<tr>
<td>Oleic acid ω-9</td>
<td>3.25</td>
<td>Non identified fatty acid</td>
<td>1.11</td>
</tr>
<tr>
<td>Mineral composition:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>600</td>
<td>Phosphorus</td>
<td>700</td>
</tr>
<tr>
<td>Copper</td>
<td>1.1</td>
<td>Potassium</td>
<td>1200</td>
</tr>
<tr>
<td>Iron</td>
<td>100</td>
<td>Sodium</td>
<td>900</td>
</tr>
<tr>
<td>Manganese</td>
<td>6.00</td>
<td>Zinc</td>
<td>3.00</td>
</tr>
<tr>
<td>Pigment composition:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carotenoids</td>
<td>400</td>
<td>C-Phycocyanin</td>
<td>13,000</td>
</tr>
<tr>
<td>Chlorophyll</td>
<td>950</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table (2): Average body weight, and consumption from drinking water and spirulina of rabbit bucks as affected by *Spirulina platensis* administration during the treatment period.

<table>
<thead>
<tr>
<th>Item</th>
<th>Spirulina platensis level</th>
<th>±SEM</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G1 (Control)</td>
<td>G2 (150 mg/l)</td>
<td>G3 (300 mg/l)</td>
</tr>
<tr>
<td>Initial buck body weight (kg)</td>
<td>3.060</td>
<td>3.063</td>
<td>3.040</td>
</tr>
<tr>
<td>Final buck body weight (kg)</td>
<td>3.313<sup>b</sup></td>
<td>3.379<sup>ab</sup></td>
<td>3.460<sup>a</sup></td>
</tr>
<tr>
<td>Change in body weight (kg)</td>
<td>0.253<sup>b</sup></td>
<td>0.316<sup>ab</sup></td>
<td>0.424<sup>a</sup></td>
</tr>
<tr>
<td>Daily water consumption (ml/buck/day)</td>
<td>192.20</td>
<td>195.41</td>
<td>196.15</td>
</tr>
<tr>
<td>Daily spirulina intake (mg/buck/day)</td>
<td>-</td>
<td>29.31</td>
<td>58.85</td>
</tr>
</tbody>
</table>

Different lower case letters indicate significant differences (P<0.05).

Table (3): Testicular and epididymal characteristics, libido and blood plasma testosterone concentration of rabbit bucks as affected by *Spirulina platensis* administration.

<table>
<thead>
<tr>
<th>Item</th>
<th>Spirulina platensis level</th>
<th>±SEM</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G1 (Control)</td>
<td>G2 (150 mg/l)</td>
<td>G3 (300 mg/l)</td>
</tr>
<tr>
<td>Pre-slaughtered weight of bucks (g)</td>
<td>3300.67</td>
<td>3360.60</td>
<td>3406.67</td>
</tr>
<tr>
<td>Relative testicular weight (%)</td>
<td>0.198</td>
<td>0.208</td>
<td>0.209</td>
</tr>
<tr>
<td>Average testicular length (cm)</td>
<td>3.15</td>
<td>3.16</td>
<td>3.17</td>
</tr>
<tr>
<td>Average testicular width (cm)</td>
<td>1.14</td>
<td>1.16</td>
<td>1.17</td>
</tr>
<tr>
<td>Average testicular thickness (cm)</td>
<td>0.91</td>
<td>0.91</td>
<td>0.92</td>
</tr>
<tr>
<td>Sexual desire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaction time (s)</td>
<td>22.20<sup>a</sup></td>
<td>15.30<sup>b</sup></td>
<td>12.10<sup>c</sup></td>
</tr>
<tr>
<td>Plasma testosterone (ng/ml)</td>
<td>1.75<sup>b</sup></td>
<td>2.64<sup>a</sup></td>
<td>2.66<sup>a</sup></td>
</tr>
</tbody>
</table>

Different lower case letters indicate significant differences (P<0.05).
Table (4): Semen quality parameters of rabbit bucks as affected by *Spirulina Platensis* administration

<table>
<thead>
<tr>
<th>Item</th>
<th>Spirulina platensis level</th>
<th>±SEM</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G1 (Control)</td>
<td>G2 (150 mg/l)</td>
<td>G3 (300 mg/l)</td>
</tr>
<tr>
<td>Net semen volume (ml)</td>
<td>0.645<sup>b</sup></td>
<td>0.730<sup>a</sup></td>
<td>0.736<sup>a</sup></td>
</tr>
<tr>
<td>Semen pH value</td>
<td>7.24<sup>b</sup></td>
<td>7.37<sup>a</sup></td>
<td>7.43<sup>a</sup></td>
</tr>
<tr>
<td>Progressive sperm motility (%)</td>
<td>71.50<sup>b</sup></td>
<td>82.00<sup>a</sup></td>
<td>82.50<sup>a</sup></td>
</tr>
<tr>
<td>Live sperm (%)</td>
<td>73.40<sup>b</sup></td>
<td>80.60<sup>a</sup></td>
<td>81.90<sup>a</sup></td>
</tr>
<tr>
<td>Abnormal sperm (%)</td>
<td>21.70<sup>a</sup></td>
<td>12.30<sup>c</sup></td>
<td>13.70<sup>b</sup></td>
</tr>
<tr>
<td>Sperm cell concentration (×10⁶/ml)</td>
<td>428.00<sup>c</sup></td>
<td>591.40<sup>a</sup></td>
<td>577.90<sup>b</sup></td>
</tr>
<tr>
<td>Semen pH value</td>
<td>14.80<sup>a</sup></td>
<td>11.50<sup>b</sup></td>
<td>11.80<sup>b</sup></td>
</tr>
<tr>
<td>Alkaline phosphatase activity (%)</td>
<td>24.60<sup>c</sup></td>
<td>36.20<sup>a</sup></td>
<td>32.50<sup>b</sup></td>
</tr>
<tr>
<td>Total sperm output/ejaculate (×10⁹)</td>
<td>275.95<sup>b</sup></td>
<td>431.72<sup>a</sup></td>
<td>425.33<sup>a</sup></td>
</tr>
<tr>
<td>Initial semen fructose (mg/dl)</td>
<td>160.60<sup>b</sup></td>
<td>242.80<sup>a</sup></td>
<td>236.20<sup>a</sup></td>
</tr>
</tbody>
</table>

Different lower case letters indicate significant differences (P<0.05).

Table (5): Biochemical constituents and enzymatic activity in blood and seminal plasma of rabbit bucks as affected by *Spirulina platensis* administration

<table>
<thead>
<tr>
<th>Item</th>
<th>Spirulina platensis level</th>
<th>±SEM</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G1 (Control)</td>
<td>G2 (150 mg/l)</td>
<td>G3 (300 mg/l)</td>
</tr>
<tr>
<td>Blood plasma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total proteins (g/dl)</td>
<td>5.82<sup>b</sup></td>
<td>6.37<sup>a</sup></td>
<td>6.30<sup>a</sup></td>
</tr>
<tr>
<td>Albumin (Alb, g/dl)</td>
<td>3.05<sup>b</sup></td>
<td>3.25<sup>a</sup></td>
<td>3.23<sup>a</sup></td>
</tr>
<tr>
<td>Globulin (Glb, g/dl)</td>
<td>2.77<sup>b</sup></td>
<td>3.12<sup>a</sup></td>
<td>3.07<sup>a</sup></td>
</tr>
<tr>
<td>Alb/Glb ratio</td>
<td>1.10<sup>a</sup></td>
<td>1.04<sup>b</sup></td>
<td>1.05<sup>b</sup></td>
</tr>
<tr>
<td>AST (IU/l)</td>
<td>20.22<sup>a</sup></td>
<td>12.83<sup>b</sup></td>
<td>12.75<sup>b</sup></td>
</tr>
<tr>
<td>ALT (IU/l)</td>
<td>16.02<sup>a</sup></td>
<td>11.09<sup>b</sup></td>
<td>11.13<sup>b</sup></td>
</tr>
</tbody>
</table>

Seminal plasma

Item	*Spirulina platensis* level	±SEM	P-Value		
	G1 (Control)	G2 (150 mg/l)	G3 (300 mg/l)		
Total proteins (g/dl)	3.69^b	4.23^a	4.28^a	0.096	0.009
Albumin (Alb, g/dl)	2.09^b	2.25^a	2.20^a	0.051	0.162
Globulin (Glb, g/dl)	1.60^b	1.98^a	2.08^a	0.08	0.015
Alb/Glb ratio	1.31^a	1.15^{ab}	1.06^b	0.056	0.050
AST (IU/l)	27.400^a	18.800^b	16.400^b	1.400	0.001
ALT (IU/l)	19.600^a	14.180^b	14.156^b	0.801	0.001

Different lower case letters indicate significant differences (P<0.05). AST: aspartate aminotransferase and ALT: alanine aminotransferase.

219
Table (6): Oxidative capacity in blood and seminal plasma of rabbit bucks as affected by *Spirulina Platensis* administration

<table>
<thead>
<tr>
<th>Item</th>
<th>Spirulina platensis level</th>
<th>±SEM</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G1 (Control)</td>
<td>G2 (150 mg/l)</td>
<td>G3 (300 mg/l)</td>
</tr>
<tr>
<td>Blood plasma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAC (mmol/l)</td>
<td>1.01</td>
<td>1.18</td>
<td>1.19</td>
</tr>
<tr>
<td>GSH (mg/dl)</td>
<td>16.45b</td>
<td>21.78a</td>
<td>21.80a</td>
</tr>
<tr>
<td>GPx (mg/dl)</td>
<td>6.93b</td>
<td>7.85a</td>
<td>7.87a</td>
</tr>
<tr>
<td>GST (IU)</td>
<td>1.20b</td>
<td>1.33a</td>
<td>1.34a</td>
</tr>
<tr>
<td>SOD (IU)</td>
<td>6.45b</td>
<td>7.16a</td>
<td>7.14a</td>
</tr>
<tr>
<td>TBARS (nmol/ml)</td>
<td>1.52a</td>
<td>1.08b</td>
<td>1.11b</td>
</tr>
<tr>
<td>Seminal plasma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAC (mmol/l)</td>
<td>0.92</td>
<td>1.10</td>
<td>1.12</td>
</tr>
<tr>
<td>GSH (mg/dl)</td>
<td>12.99b</td>
<td>17.52a</td>
<td>18.12a</td>
</tr>
<tr>
<td>GPx (mg/dl)</td>
<td>6.142b</td>
<td>7.572a</td>
<td>7.664a</td>
</tr>
<tr>
<td>GST (IU)</td>
<td>1.09b</td>
<td>1.32a</td>
<td>1.27a</td>
</tr>
<tr>
<td>SOD (IU)</td>
<td>6.68b</td>
<td>8.71a</td>
<td>8.83a</td>
</tr>
<tr>
<td>TBARS (nmol/ml)</td>
<td>1.44a</td>
<td>1.07b</td>
<td>1.05b</td>
</tr>
</tbody>
</table>

Different lower case letters indicate significant differences (P<0.05). TAC: Total antioxidant capacity, GSH: glutathione content, GPx: glutathione peroxidase, GST: glutathione S-transferase, SOD: superoxide dismutase and TBARS: thiobarbituric acid-reactive substances.

Table (7): Reproductive performance of rabbit does naturally mated by bucks in the experimental groups

<table>
<thead>
<tr>
<th>Reproductive parameter</th>
<th>Spirulina Platensis level</th>
<th>±SEM</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G1 (Control)</td>
<td>G2 (150 mg/l)</td>
<td>G3 (300 mg/l)</td>
</tr>
<tr>
<td>Pregnancy rate</td>
<td>14/20 (70)b</td>
<td>17/20 (85)a</td>
<td>16/20 (80)ab</td>
</tr>
<tr>
<td>Kindling rate</td>
<td>11/14 (78.6)</td>
<td>14/17(82.4)</td>
<td>12/16(75.0)</td>
</tr>
<tr>
<td>Total litter size at birth (n)</td>
<td>6.73b</td>
<td>8.17a</td>
<td>8.36a</td>
</tr>
<tr>
<td>Live litter size at birth (n)</td>
<td>5.18b</td>
<td>7.57a</td>
<td>7.08a</td>
</tr>
<tr>
<td>Viability rate at birth</td>
<td>77.89b</td>
<td>90.68a</td>
<td>87.54a</td>
</tr>
<tr>
<td>Litter size at weaning (n)</td>
<td>4.91b</td>
<td>7.29a</td>
<td>6.75a</td>
</tr>
<tr>
<td>Viability rate at weaning</td>
<td>94.85</td>
<td>96.41</td>
<td>95.49</td>
</tr>
<tr>
<td>Average bunny weight at birth (g)</td>
<td>44.09b</td>
<td>52.50a</td>
<td>50.92a</td>
</tr>
<tr>
<td>Average bunny weight at weaning (g)</td>
<td>420.82c</td>
<td>555.43a</td>
<td>547.58b</td>
</tr>
<tr>
<td>Litter weight at birth (g)</td>
<td>228.37b</td>
<td>397.43a</td>
<td>360.51a</td>
</tr>
<tr>
<td>Litter weight at weaning (g)</td>
<td>2066.22b</td>
<td>4049.08a</td>
<td>3696.17a</td>
</tr>
</tbody>
</table>

Different lower case letters indicate significant differences (P<0.05).
Spirulina, rabbit bucks, semen quality, antioxidants, fertility

REFERENCES

Hwang J.H., Lee I.T., Jeng K.C., Wang M.F., Hou R.C.W., Wu S.M. and
Spirulina, rabbit bucks, semen quality, antioxidants, fertility

الملخص العربي

التأثير المحتمل لطحلب الأسبرولينا كمضاد للأكسدة على تحسين إنتاج السائل المنوي والأجهد التأكسدي في الدم والبلازما المنوية لذكور الارانب

إبراهيم طلعت الريحاني
قسم إنتاج الدواجن - كلية الزراعة - جامعة دمياط - مصر

أحمد عبد الونيس جبر
قسم الانتاج الحيواني - كلية الزراعة - جامعة طنطا - مصر

هدف هذه الدراسة إلى تقييم تأثير طحلب الأسبرولينا على الرغبة الجنسية، جودة السائل المنوي وخصائص الدم البيوكيميائية وحالة مضادات الأكسدة في الدم والبلازما المنوية لذكور الارانب. استخدم في هذه الدراسة عدد 30 من ذكور الارانب (ابري) المتقاسم في 3 مجموعات (10 ذكور في كل مجموعة). كانت الذكور في المجموعة الأولى (نترول) الناضجة (1) ذكور، ثم تسميتها إلى 2 مرحلة تشرب ماء مضاف الجلوتاثيون (150و 300 ملجم لجرام طحلب الأسبرولينا/ لتر)، لبوميا وثاني مر (مدة المعاملة)، على التوالي. بعد المعاملة مباشرة، تم جمع السائل المنوي وتقديم مرنين عشوبيا لمدة 10 أسابيع (200 قذفة/جم/يوم). في نهاية التجربة تم تقييم مكونات الدم البيوكيميائية، نشاط الأنزيمات وحالة مضادات الأكسدة في الدم والبلازما المنوية وكذلك تقييم تركيز هرمون التستوستيرون في بلازما الدم. تم تلقيح الأم الارنبات بالذكور من كل مجموعة بعد خمس ذكور من كل مجموعة. أدت المعاملة بطلب الأسبرولينا (150 و 300 ملجم/لتر) إلى:

1- زيادة معنوية (P<0.05) في حجم القذيفة المنوية ، قيمة الاس الحيدروجيني والنسبة المئوية للحركة الحيوية، سلامة الغشاء وتركيز الحيوانات المنوية في القذيفة وتركيز الفركس كلي في السائل المنوي.

2- انخفاض معنوي (P<0.05) في وقت رد الفعل والنسبة المنوية للحيوانات المنوية الشاذة وبيئة اللوبروم.

3- زيادة معنوية (P<0.05) في تركيز البروتينات الكلية، الجلوبولين، ونشاط الجلوتاتيون بروكسيداز، الجلوتانثيون ن. ترانسفيوزي و السوبر أوكسيد ديمتوتاز.

4- انخفاض معنوي (P<0.05) في نشاط الأنزيمات الناقلة لمجموعة الأمين وموجات حمض الليبرين بيريتويك الثقافية.

5- زيادة معنوية (P<0.05) في تركيز هرمون التستوستيرون والأنبوبين في بلازما الدم.

6- تحسن معنوي (P<0.05) في معدل الحمل وحجم البطن في الأمات المختبرة بحليب.

استناداً إلى هذه الدراسة، معالمة ذكورة الارانب بـ 150 ملجم طحلب الأسبرولينا/ لتر ماء شرب يوميا وفترة 30 يوم على الأقل يمكن استخدامها بشكل فعال لتحسين جودة السائل المنوي، حالة الارناآ وحالة الأجهد التأكسدي والخصوبة لذكور الأرانب.